
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre

D
D
D
D
H
M
 

  

epared by 
Dr. Dincer
Dr. Suzan
Dr. Ruwen
Dr. Curt E
Hadi Farh
Missouri U

System

2015 

Track

r Konur 
nna Long 
n Qin 

Elmore 
hangi 
University 
ms Engine

Final Repo
 January 

k Insp
Mea

of Scienc
eering Dep

ort Prepared

pection
asurem

ce and Te
partment

d for Missou
Projec

n Plan
ment A

echnology

uri Departm
ct TR20140

nning
Analys

y, Enginee

ent of Trans
9 

 and R
sis    

ering Man

sportation 
Report cm

Risk 

agement 

mr15-005 

and  



1 
 

TECHNICAL REPORT DOCUMENTATION PAGE. 
 

1.  Report No.: cmr 15-005 2.  Government Accession No.: 3.  Recipient's Catalog No.: 
   
4.  Title and Subtitle: 5.  Report Date: 
Track Inspection Planning and Risk Measurement Analysis 11/2014 

6.  Performing Organization Code: 
 

7.  Author(s): 8.  Performing Organization Report No.: 
Dincer Konur, Hadi Farhangi, Suzanna Long, Ruwen Qin, Curt Elmore  
9.  Performing Organization Name and Address: 10.  Work Unit No.: 
Missouri University of Science and Technology 
1870 Miner Circle 
Rolla, MO 65409 

 
11.  Contract or Grant No.: 
TR201409 

12.  Sponsoring Agency Name and Address: 13.  Type of Report and Period Covered: 
Missouri Department of Transportation 
Research, Development and Technology 
PO BOX 270, Jefferson City, MO 65102 

Final Report, 08/01/2013-11/14/2014 
14.  Sponsoring Agency Code: 
MoDOT 

15.  Supplementary Notes: 
The investigation was conducted in cooperation with the U. S. Department of Transportation, Federal Highway Administration. 
 
16.  Abstract: This project models track inspection operations on a railroad network and discusses how the inspection results can 
be used to measure the risk of failure on the tracks. In particular, the inspection times of the tracks, inspection frequency of the 
tracks, and times between consecutive inspections on the same tracks should be considered for scheduling inspections on the 
railroad tracks. Furthermore, an inspection plan should schedule inspections considering the characteristics of different tracks. 
Therefore, it is important to schedule track inspections such that the potential defects are captured as much as possible within 
minimum times to increase safety. The project formulates a mathematical optimization problem for the track inspection planning 
considering the practical settings of track inspection operations such as inspection times, inspection frequencies required, time 
between consecutive inspections, and importance of distinct tracks. The two objectives simultaneously captured in this model are 
minimization of total inspection times and maximization of the weighted inspections. An efficient solution method is proposed for 
solving this model. The solution method is compared to a scheduling procedure, which can be used in absence of the findings in 
this project, on a set of railroad track networks of different sizes. Based on the comparison, the solution method proposed proves 
to find improved inspection schedules regardless of the railroad network size. A review of the techniques on how to use the 
inspection results to measure risk of failure is provided. 
 
 
 
 
17.  Key Words: Track Inspection, Scheduling, Track Risk 18.  Distribution Statement: 
 No restrictions.  This document is available to the public 

through National Technical Information Center, 
Springfield, Virginia 22161. 

19.  Security Classification (of this report): 20.  Security Classification (of this page): 21.  No of Pages:119 22.  Price: 
Unclassified. Unclassified.   

 
 
 
Form DOT F 1700.7 (06/98). 
 
 
 
 
 
 
 



2 
 

Executive Summary 
 
One of the most important railroad safety operations that State Departments of Transportation 
and/or railroad companies need to plan is the inspection of railroad tracks. This project uses 
mathematical modeling and optimization approaches to analyze the track inspection operations 
on a railroad network and discusses possible procedures that can be used to interpret the 
inspection results.  
 
In particular, a mathematical programming model is formulated to determine the best 
inspection planning. The model accounts for the following practical settings of track 
inspection planning operations.  

 Inspection times of the tracks: Different tracks might require different inspection times 
due to their lengths and/or speed limits on them. 

 Inspection frequencies of the tracks: Different tracks might require varying inspection 
frequencies due to their classifications, the traffic on them, and/or their importance 
regarding safety.  

 Times between consecutive inspections on the same track: The time between 
consecutive inspections of the same track should be long enough allowing traffic on it. 
That is, a track should not be inspected right after its previous inspection as this would 
not allow sufficient time to detect new defects and/or accurately measure safety risks. 

 Inspection importance of the tracks: Depending on their characteristics, different tracks 
can have different inspection importance. For instance, it might be more important to 
inspect different railroad classes or it might be considered more important to inspect 
the tracks with passenger and/or hazardous material traffic than to inspect tracks with 
low and/or non-hazardous freight traffic.  

 
The project formulates a mathematical optimization problem for the track inspection planning 
considering the above practical settings of track inspection operations. It is important to 
schedule track inspections such that the potential defects are captured as much as possible 
within minimum times to increase safety to the maximum. Therefore, the two objectives 
simultaneously captured in this model are minimization of total inspection times and 
maximization of the total importance of the inspections.  
 
A solution method which determines the inspection schedules is proposed for this model. 
Specifically, an inspection schedule facilitates decision making by telling (i) which tracks 
should be inspected, (ii) when these tracks should be inspected, and (iii) what should be the 
sequence of track inspections. A genetic algorithm is constructed to determine inspection 
schedules with low total inspection times as well as high total inspection importance. This 
method provides a set of alternative inspection schedules that are not only effective in terms of 
total inspection times but also total safety importance of the inspections.  
 
In absence of this scheduling method, a simple dynamic procedure can be used for track 
inspection planning; however, it would not account for the total time and total importance of 
the inspections. Upon comparing the solution method proposed in this project to this simple 
procedure on a set of railroad track networks of different sizes, the solution method proposed 
proves to find improved inspection schedules regardless of the railroad network size. That is, 
the solution method will improve railroad safety by two means: (i) either reduce the total time 



3 
 

required for inspections or (ii) increase the inspections within a given time frame. Therefore, 
MoDOT can benefit from this method either by reduced resource usage to maintain railroad 
safety or increased safety with same amount of resource usage.  
 
A review of the techniques on how to use the inspection results to measure risk of failure is 
provided. Particularly, reliability, defect development, and crack growth approaches are 
discussed for measuring the risk of failure for the tracks. Based on these approaches, a method 
for associating a risk value for a track segment after inspection, which uses the observations of 
the inspection, is recommended. This method calculates a risk value for an inspected track 
considering the crack size detected in case the crack is detected. In case the crack is not 
detected, this method calculates a risk value using the lifetime characteristics of the track, the 
accuracy of the inspection method, and the process of a crack from its initialization to failure 
development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

CONTENTS: 
1. INTRODUCTION AND LITERATURE REVIEW ........................................................... 9 

1.1. Types of Inspection ...................................................................................................... 9 
1.1.1. Soil Inspection ....................................................................................................... 9 
1.1.2. Railroad Bridge Inspection .................................................................................. 10 
1.1.3. Rail Inspection ..................................................................................................... 10 

1.2. Inspection Regulation ................................................................................................. 11 
1.3. Track Inspection Planning .......................................................................................... 11 

1.3.1. Optimization Problems in Track Inspection Planning ........................................ 11 
1.3.2. Methods and Results in Track Inspection Planning ............................................ 12 

1.4. Track Inspection Planning in the Project Content ...................................................... 13 
2. TRACK INSPECTION PLANNING MODEL ................................................................. 13 
3. SOLUTION ANALYSIS ................................................................................................... 18 

3.1. Greedy Heuristic Approach ........................................................................................ 19 
3.1.1. Time Minimizing Greedy Heuristic .................................................................... 20 
3.1.2. Weight Maximizing Greedy Heuristic ................................................................ 21 

3.2. Genetic Algorithm Approach ..................................................................................... 22 
3.2.1. Chromosome Representation and Initialization .................................................. 22 
3.2.2. Fitness Evaluation ............................................................................................... 25 
3.2.3. Mutation .............................................................................................................. 26 
3.2.4. Termination ......................................................................................................... 26 

4. NUMERICAL STUDIES .................................................................................................. 28 
4.1. Convergence of the Genetic Algorithm ...................................................................... 29 
4.2. Comparison of Genetic Algorithm and Greedy Heuristic Algorithm ........................ 30 

4.2.1. Quantitative Comparison..................................................................................... 30 
4.2.2. Qualitative Comparison....................................................................................... 32 

5. IMPLEMENTATION DETAILS ...................................................................................... 34 
6. RISK MEASUREMENT ANALYSIS .............................................................................. 36 

6.1. Reliability Approach ................................................................................................... 36 
6.2. Defect Development Approach .................................................................................. 38 

6.2.1. Risk Definition .................................................................................................... 39 
6.2.2. Calculating the Expected Number of Failures between Inspections ................... 39 
6.2.3. Detection Rate ..................................................................................................... 40 

6.3. Crack Growth Approach ............................................................................................. 42 
6.3.1. Crack Growth and Track Lifetime Models ......................................................... 42 
6.3.2. Risk Measurement when Crack Is Detected ....................................................... 45 
6.3.3. Risk Measurement when Crack Is Not Detected ................................................ 46 

7. CONCLUSIONS................................................................................................................ 48 
8. REFERENCES .................................................................................................................. 49 
9. APPENDIX ........................................................................................................................ 52 

Appendix A: Parent Size of the Iterations of the Genetic Algorithm .................................... 52 



5 
 

Appendix B: Improvements of the Pareto Fronts of the Genetic Algorithm ......................... 70 
Appendix C: Improvement of the Weight to Time Ratio of The Genetic Algorithm ........... 88 
Appendix D: Quantitative Comparison of the Genetic and Greedy Algorithms ................. 106 
Appendix E: Qualitative Comparison of the Genetic and Greedy Algorithms ................... 111 
Appendix F: Comparison of the Pareto Fronts of the Genetic and Greedy Algorithms ..... 116 
Appendix G: User’s Guide for Track Inspection Planning Algorithms .............................. 134 

G.1. Input-Output for the Algorithms .............................................................................. 134 
G.2. Genetic Algorithm Description and User Guidelines .............................................. 136 
G.3. Greedy Algorithm Description and User Guidelines ............................................... 154 

Appendix H. Remedial Actions for Detected Cracks .......................................................... 164 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 
 

LIST OF PARAMETERS, VARIABLES, AND FUNCTIONS: 

Parameters: 

݊ Number of tracks in the railroad network 

݇௠௔௫ Maximum number of inspections that can be completed 

݅, ݆ Indexes used for a track, ݅, ݆ ൌ 1, 2, 3, … , ݊ 

݇, ,݇ ,Indexes used for an inspection ݌ ݌ ൌ 1, 2, 3, … , ݇௠௔௫  

݅ ,Set of tracks ܫ ∈ ,ܫ ܫ ൌ ሼ1, 2, 3, … , ݊ሽ 

݇ ,Set of inspections ܭ ∈ ܭ,ܭ ൌ ሼ1,… , ݇௠௔௫ሽ 

ܶ The length of the inspection period 

ܯ ,A large number ܯ ൒ ܶ 

௜ܶ௞ The start time of the ݇th inspection on track ݅ ∈  ܫ

௜ The number of required inspections for trackܮ ݅ ∈   ܫ

1  ܮ ൈ ݊ vector of ܮ௜ values, ܮ ൌ ሾܮଵ, ,ଶܮ ,ଷܮ … ,  ௡ሿܮ

݅	௜ Inspection time of trackݐ ∈  ܫ

1 ݐ ൈ ݊ vector of ݐ௜ values, ݐ ൌ ሾݐଵ, ,ଶݐ ,ଷݐ … ,  ௡ሿݐ

	߬௜ The minimum time required between two consecutive inspections of track	݅ ∈  ܫ

߬ 1 ൈ ݊ vector of ߬௜ values, ߬ ൌ ሾ߬ଵ, ߬ଶ, ߬ଷ, … , ߬௡ሿ 

݅	௜௝ The travel time from trackݐ̂ ∈ to track ܫ ݆ ∈  ܫ

݊ ݐ̂ ൈ ݊ matrix of ̂ݐ௜௝ values 

  ௜ The inspection importance ofݓ	

1 ݓ ൈ ݊ vector of ݓ௜ values, ݓ ൌ ሾݓଵ,ݓଶ, ,ଷݓ … ,  ௡ሿݓ

Variables: 

݅	௜௞ 1 if trackݕ ∈ ݇ is inspected at inspection ܫ ∈  otherwise 0 ,ܭ

ܻ ݊ ൈ ݇௠௔௫ matrix of ݕ௜௞ values 

݆	௜௝௞ 1 if trackݖ	 ∈ is inspected right after track ܫ ݅ ∈ at the ሺ݇ ܫ ൅ 1ሻ௧௛ inspection, 0 otherwise 

ܼ ݊ ൈ ݊ ൈ ሺ݇௠௔௫ െ 1ሻ array of  ௜௝௞ valuesݖ

௜ܶ௞ The start time of the ݇th inspection on track ݅ ∈  ܫ

Model Functions: 

ܶܶሺܻ, ܼሻ Total time of inspections, ܶܶሺܻ, ܼሻ ൌ∑ ∑ ௜௞௜∈ூݕ௜ݐ
௞೘ೌೣ
௞ୀଵ ൅ ∑ ∑ ∑ ௜௝௞௝∈ூ௜∈ூݖ௜௝ݐ̂

௞೘ೌೣିଵ
௞ୀଵ  

ܹܶሺܻሻ Total weight of inspections, ܹܶሺܻሻ ൌ ∑ ∑ ௜௞௜∈ூݕ௜ݓ
௞೘ೌೣ
௞ୀଵ  

 
 
 
 
 
 

 



7 
 

LIST OF TABLES 
 

Table 1. Components of Soil Inspection and Their Definitions 

Table 2. Quantitative Comparison between Greedy Algorithm and GA; n=100 Tracks 

Table 3. Quantitative Comparison between Greedy Algorithm and GA; n=150 Tracks 

Table 4. Quantitative Comparison between Greedy Algorithm and GA; n=200 Tracks 

Table 5. Quantitative Comparison between Greedy Algorithm and GA; n=250 Tracks 

Table 6. Quantitative Comparison between Greedy Algorithm and GA; n=300 Tracks 

Table 7. Quantitative Comparison between Greedy Algorithm and GA; n=350 Tracks 

Table 8. Quantitative Comparison between Greedy Algorithm and GA; n=400 Tracks 

Table 9. Quantitative Comparison between Greedy Algorithm and GA; n=450 Tracks 

Table 10. Quantitative Comparison between Greedy Algorithm and GA; n=500 Tracks 

Table 11. Average Values for Quantitative Comparison for Each Network Size 

Table 12. Qualitative Comparison between Greedy Algorithm and GA; n=100 Tracks 

Table 13. Qualitative Comparison between Greedy Algorithm and GA; n=150 Tracks 

Table 14. Qualitative Comparison between Greedy Algorithm and GA; n=200 Tracks 

Table 15. Qualitative Comparison between Greedy Algorithm and GA; n=250 Tracks 

Table 16. Qualitative Comparison between Greedy Algorithm and GA; n=300 Tracks 

Table 17. Qualitative Comparison between Greedy Algorithm and GA; n=350 Tracks 

Table 18. Qualitative Comparison between Greedy Algorithm and GA; n=400 Tracks 

Table 19. Qualitative Comparison between Greedy Algorithm and GA; n=450 Tracks 

Table 20. Qualitative Comparison between Greedy Algorithm and GA; n=500 Tracks 

Table 21. Average Values for Qualitative Comparison for Each Network Size 

Table 22. Minimum Inspection Requirements per Year Based on Class and Type of Tracks 

Table 23. FRA Track Classes based on Operating Speed  

Table 24. FRA Track Classes based on Track Geometry 

Table 25. List of Input Parameters for Genetic and Greedy Heuristic Algorithms 

 
 
 
 
 
 
 



8 
 

LIST OF FIGURES 
 

Figure 1. Different types of Inspection in a railroad 

Figure 2. Examples of Integer representation of a chromosome 

Figure 3. Genetic Algorithm Flow Chart 

Figure 4: Number of Parent Chromosomes vs. Iterations 

Figure 5: Parent Chromosomes over Iterations 

Figure 6: Average TW/TT Ratios vs. Iterations 

Figure 7: Pareto Fronts of the Genetic and Greedy Algorithms 

Figure 8: Excel Screenshots for Excel Input Files 

Figure 9: Excel Screenshot for an Excel Output file 

Figure 10. P-F Interval Illustration  

Figure 11. Detection Probabilities for Different Inspection Methods 

Figure 12. Lognormal Detection Probabilities of Cracks 

Figure 13. Crack Growth over Time 

Figure 14. Exponentially Distributed Track Lifetime  

 
 
 

 

 

 

   



9 
 

1. INTRODUCTION AND LITERATURE REVIEW 

 
One of the major problems that railroads have faced since the earliest days is the service 
failures on railroad tracks. The North American railroads have been inspecting their most 
costly infrastructure asset, the rail, since the late 1920's; and, with increased traffic and more 
frequent failures on railroads, rail inspection is more important today than it has ever been (C. 
NDT, 2013). To keep railroads safe and prevent any high maintenance costs caused by failures 
on the railroads, scheduled inspections must be performed on rail tracks, soil, and bridges. To 
plan such a scheduled inspection process, a problem formulation and optimization tools are 
needed. This section provides a review of inspection problems and optimization tools that are 
used to solve the inspection scheduling problems. In particular, the following three aspects of 
railroad inspection have been reviewed: types of inspection, inspection regulations, and track 
inspection planning. 
  

1.1.Types of Inspection 
 

There are several types of track inspections such as soil inspection, railroad bridge inspection, 
and railroad inspection, and each track inspection type has their subcategories. Figure 1 
summarizes the different types of inspections and their subcategories, which are briefly 
discussed next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1.1. Soil Inspection  
 
Soil inspection investigates the Ballast, Subgrade, and Roadway (BSR) component, which 
includes all earthen materials on the track structure, tracks, and embankments (Uzarski et al., 
1993). Table 1 gives the definitions of BSR components. It focuses on the thickness of the 
ballast, subsoil material and geotechnical properties of subgrade (Hugenschmid, 1999). In 
addition, the inspection is executed mainly by digging trenches at evenly spaced intervals and 
in locations of special interest (Hugenschmid, 1999). 
 

Railroads Inspection Types 

Soil Inspection Bridge Inspection Rail Inspection 

Ballast 
Subgrade 
Roadway 

Components 

Railhead 
Switch Blades 

Bolt Holes 
Foot of Rail 
Rail Gauge 

Thermal welds 

Figure 1. Different types of Inspection in a railroad 



10 
 

 
Table 1. Components of Soil Inspection and Their Definitions 

Components Definition 

Ballast 
“Ballast serves to secure the track structure in place, provide for track 
structure drainage, and transmit loads from the ties to the subgrade” 
(Uzarski et al. 1993). 

Subgrade 
“The subgrade is either the natural earth or placed fill upon which the 
track structure rests” (Uzarski et al. 1993). 

Embankment A road made of earth to build the tracks on it. 
 
A major potential BSR defect is the vegetation growth, which includes grass, weeds, bushes, 
trees, and other natural cover (Uzarski et al., 1993). Therefore, soil inspection also investigates 
the plants on the railroads. For instance, Erikson et al. (2004) tried to improve the reliability of 
soil inspection by adding the investigation of plant growth in the inspection process.  
 

1.1.2. Railroad Bridge Inspection  
 
Many of the railroad bridges were not designed for the weights they are now bearing and as a 
consequence, structural failure rates are increasing (Lee et al., 1999). To prevent this failure, 
the bridges are inspected frequently. Bridge inspection is a regularly scheduled bridge safety 
inspection that is conducted on all railroad bridges (C. B. Transportation, 2012).  
 

1.1.3. Rail Inspection 
 
Rail inspection investigates the Rail Heads, Switch Blades, Bolt Holes, Foot of the Rail, Rail 
Gauge, Thermite Welds, and etc. (H. NDT, 2014). Some technologies such as laser induced 
ultra sound can improve the rail inspection (Cerniglia et al., 2006). Rail inspection and more 
particularly rail inspection planning is the focus of this project; hence, the review focuses on 
rail inspection. In what follows, the studies on rail inspection are reviewed. Later, rail 
inspection planning will be discussed in detail.  
 

Railheads: Railhead is the highest part of a rail profile that the wheels of train roll on. 
Defects in a railhead and web can be detected with rail inspection cars and rail inspection tools 
equipped with special transducers such as wheel probes (Hayashi et al., 2007). Using 
ultrasonic surface wave, the critical surface cracks in the railhead can be detected (Hesse, 
2007). There are many technologies available for this kind of rail inspection. Some of them 
are discussed by Uzarski et al. (1994).  
 

Bottom Edges: Bottom edges of rails are easily damaged regions due to contact with 
soil and fastening. Bottom edges are blind zones for the conventional ultrasonic inspection 
techniques in which signals are input from a railhead (Hayashi et al., 2007). Kenderian et al. 
(2006) proposed an ultrasonic technology to inspect bottom of rails as well. 
 

Track gauge: Track gauge is the spacing of the rails on a railway track. Babenko 
(2006) studied rail gauge and reliable identification and localization of structural defects on 
railroad tracks. 



11 
 

Crane inspection: Crane inspection should be done based on international standards 
(Gantrex, 2000). Gantrex (2000) argued that crane rails are inspected and replaced based on 
the subjective judgment and experience of the inspector, which can lead to either premature 
replacement or major problems caused by waiting too long to replace. Gantrex (2000) 
introduced some international standards to use for the inspection process. 
 

1.2.Inspection Regulation 
 

According to the US Department of Transportation (DOT) and Federal Railroad 
Administration (FRA), there are some roles and regulations regarding the rail inspection. The 
following discussion summarizes two sets of regulations announced by US DOT and FRA. 
 
An inspector has the following responsibilities (O. D. Transportation, 2012): 

 To conduct independent inspections of railroad facilities and equipment on tracks, 
highway/rail grade crossings, cabooses, bridges, cars, crew quarters, signals, switches, 
and safety devices, 

 To investigate railroad accidents of derailments, hazardous material spills, grade 
crossing and/or railroad employee fatality, 

 To collect data and exhibits to prepare reports of accident findings and safety 
violations and attend hearings, court proceedings, meetings and conferences pertaining 
to violations of Public Utilities Commission and /or state codes, rules and regulations, 
and operate a computer to enter and retrieve data. 

 
According to Federal Railroad Administration (FRA, 2013), a railroad inspector must: 

 Plan and implement periodic inspections to provide optimum coverage of the railroad 
track networks,  

 Coordinate operation of track geometry tests and use the information to detect, locate, 
and evaluate deviations in cross-level, gage and profile of the track,  

 Perform on-ground inspections, where defects are indicated, to determine the 
seriousness of the problems and the best means of correction. 

 

1.3.Track Inspection Planning 
 
Each year, railroad companies spend billions of dollars on track inspection to recover tracks 
from defects and damages and eliminate potential safety hazards (Peng, 2011). Currently, 
track maintenance planning is mostly manual and relies on the judgment of inspectors. There 
is a considerable potential to improve the process by using operations research techniques to 
develop solutions to the problems on track maintenance (Peng, 2011).  
 

1.3.1. Optimization Problems in Track Inspection Planning 
 
The literature review on track inspection planning shows that there are several aspects of 
optimization problems that are being considered. The optimization problems extend from (1) 
strategic to management, (2) maintenance to failing rates, and (3) scheduling to monitoring.  
Uzarski et al. (1993) proposed a technology management approach to maintain the railroads, 
while Peterson (2012) and Andersson (2002) concentrate on the strategic view of 



12 
 

maintenance/inspection to develop a strategic plan for inspection. Kim and Farangopol (2011) 
investigated an optimization problem to minimize the expected total cost and the expected 
failure cost. Their formulation of the optimization model for inspection scheduling is extended 
to capture monitoring and scheduling as well.  
 
The failing rate problem is another important issue in maintenance/inspection that is 
investigated by Prescott and Andrews (2013) and Kahima (2004). Prescott and Andrews 
(2013) consider deterioration rate of the track as the mainstream problem to do the 
maintenance and Kahima (2004) focuses on defect management. Kashima (2003) also 
analyzes the inspection scheduling to minimize the time considering interventions due to 
maintenance operations. Esveld (1990) describes an approach to analyze the deterioration of 
track components and suggests a method for determining maintenance and renewal intervals.  
 
The main concern in the inspection/maintenance planning is the scheduling/monitoring issue. 
Acharya et al. (1991) discussed a rail replacement scheduling problem. Dell’Orce et al. (2001) 
studied the optimization of intervention on railway network at the right moment and 
monitoring. Budai-Balke (2009) tried to find the optimal time intervals for carrying out routine 
maintenance operations to minimize the track possession costs and maintenance costs. 
Podofillinia et al. (2005) tried to work on a problem to reduce the operation and maintenance 
expenditures while still assuring high safety standards. Finally, Higgins (1998) determined the 
best allocation of maintenance activities and crews so as to minimize the disruption to and 
from scheduled trains and to reduce completion time.  
 
Another issue regarding the scheduling is the position of maintenance planning. Hall (2000) 
focused on utilization of maintenance facility positions where multiple cars are assigned to the 
same track. He tried to decrease the possibility of blocking the rail when different teams are on 
the move to do the maintenance.  
 

1.3.2. Methods and Results in Track Inspection Planning 
 
There is a range of optimization methods that are used in the track inspection planning such as 
operations research tools, multi-objective optimization approaches, probabilistic approach, 
fuzzy logic and evolutionary programming, Markov models, event tree analysis, and heuristic 
search algorithms. The following provides a short description of those methods in track 
inspection planning.   
 
Andersson (2002) used an operations research method to find a solution to the strategic 
planning problem. He found some alternatives for maintenance procedure. He suggested two 
steps for maintenance planning: first step is to find the best action, and the second is to take 
action at the right time by the scheduling techniques (Andersson 2002). Similarly, Gordond et 
al. (2007) considered the planning inspections as a two-step problem; (1) adequate planning 
support to prevent inefficient or overlooked inspections and undetected defects, and (2) lack of 
a planning formalism for specifying inspection goals and developing and selecting inspection 
plans. They used a stochastic search algorithm for the inspection planning and they identified 
the best requirements to increase the efficiency of planning. They solved the second problem 
by using emerging sensors as a mainstream for quality control and noted that inspection 
planning can benefit from it. In addition, Podofillinia et al. (2005) adapted a multi-objective 



13 
 

optimization approach in an effort to optimize inspection and maintenance procedures with 
respect to both economical and safety-related aspects. 
 
Dell'Orco et al. (2001) used fuzzy logic to model an optimization problem and solved it via an 
evolutionary programming algorithm. They handled all activities related to the rail tracks 
maintenance in order to respect a balance between safety and economic aspects. Budai-Balke 
(2009) also used evolutionary programming methods. Shiau et al. (2007) used genetic 
algorithm to concurrently determine both process planning and inspection planning operations 
in one problem. They preferred a genetic algorithm because of the size of the problem and the 
nonlinearity of the objective functions. Higgins (1998) used the tabu search heuristic for which 
the neighborhood is defined by swapping the order of jobs, maintenance crews, or both. 
  
Kim and Frangopol (2011) used a probabilistic approach to seek the optimum cost-based 
inspection. Their solution provides the inspection times and quality of inspections. The 
optimum monitoring starting times and monitoring durations are also obtained by their 
optimization model. Kashima (2004) introduced an Event Tree (ET) analysis method and life-
cycle cost (LCC) model to optimize inspection/repair intervention in rail defect management. 
ET analysis includes all events and actions with respect to inspection/repair intervention and 
LCC model takes time value of money into account. 
 

1.4.Track Inspection Planning in the Project Content 
 
In this project, a track inspection scheduling problem with practical restrictions and realistic 
objectives is formulated and solved. Specifically, a bi-objective non-linear-integer 
optimization problem, where the total time to complete the predetermined number of 
inspections on a given set of railroad tracks is minimized while the total importance of 
inspections is maximized, is modeled. This model explicitly considers the travel time from one 
track to another and the time required between two consecutive inspections of the same track. 
A genetic algorithm to approximate a set of Pareto efficient schedules for the resulting model 
is proposed and it is compared to a naïve greedy approach that can be used for inspection 
scheduling. The results of the comparison indicate that the proposed solution method finds 
improved schedules not only in terms of total time but also better total importance of the 
inspections. Next section details the formulation of the mathematical programming model. 
 

2. TRACK INSPECTION PLANNING MODEL 

 
The model focuses on determining a schedule for an inspection vehicle on a railroad network 
of tracks. In particular, suppose that the inspection vehicle should inspect the tracks on the 
railroad network for the next inspection period. Each track requires different number of 
inspections within the inspection period. Furthermore, inspection of different tracks takes 
different times due to the length of the tracks and/or the speed limit of the inspection vehicle 
on the track. After inspecting a track, the inspection vehicle moves to the next track to be 
inspected. Note that the inspection vehicle can travel on the regular road network. That is, the 
inspection vehicle is not restricted to travel on railroad tracks only. Particularly, the inspection 
vehicle can travel to another part of the railroad network on the road. Therefore, the inspection 
planning problem accounts for the travel time from one track to another. 



14 
 

 
Now, consider a railroad network with ݊ tracks and let the tracks be indexed by ݅ such that 
݅ ∈ ܫ ൌ ሼ1,… , ݊ሽ. As noted previously, different tracks might require different inspection 
frequencies due to their characteristics. Therefore, let ܮ௜ define the number of inspections 
required for track ݅ ∈  Furthermore, let ܶ denote the length of the inspection period. Due to .ܫ
different lengths and various speed limits, inspection times of the tracks vary. To capture 
distinct inspection times of the tracks, let ݐ௜ be the inspection time of track ݅ ∈  Also, to .ܫ
capture the travel time from one track to another, let ̂ݐ௜௝ denote the inspection vehicle’s travel 
time between track ݅ ∈ ݆ and track ܫ ∈  Finally, there should be sufficient time between .ܫ
consecutive inspections of the same track to allow traffic on the track; otherwise, the 
inspection vehicle would complete all of the required inspections on a track consecutively as 
this would minimize the travel times among the tracks of the given railroad network. 
Therefore, let		߬௜ denote the minimum time required between two consecutive inspections of 
track ݅ ∈  .ܫ
 
A track inspection plan specifies the order of inspections on the tracks. For instance, an 
inspection schedule on a railroad network with 4 tracks, namely, track 1, track 2, track 3, and 
track 4, which require 1, 2, 2, and 1 inspection(s), respectively, for the next inspection period 
states the order of inspections for the inspection vehicle as follows: 
 

Inspect track 1  Travel to track 3  Inspect track 3  Travel to track 2   
 Inspect track 2  Travel to track 4  Inspect track 4  Travel to track 3   
 Inspect track 3  Travel to track 2  Inspect track 2. 
 
In the above schedule, the numbers of inspections on each of the tracks 1, 2, 3, and 4 are equal 
to the number of inspections required for each track. However, considering the length of the 
inspection period, if there is still time left, the inspection vehicle can travel to a track and 
inspect it if the time passed since the last inspection of the track is greater than the minimum 
time required between two consecutive inspections of that track. This would increase the 
probability of detecting a defect on this track within the given inspection time period. 
Therefore, the mathematical model should allow inspection of a track more but not less than 
the number of required inspections on that track within the inspection period.  
 
In particular, given the length of the inspection period, one can calculate the maximum 
number of inspections that can be completed within the inspection period. The maximum 
number of inspections that can be calculated is equal to the length of the inspection period 
divided by the inspection time of the track which has the minimum inspection time among all 
of the tracks. The mathematical model, therefore, sets a limit on the number of inspections that 
can be completed. Specifically, let inspections be indexed by ݇ such that ݇ ∈ ܭ ൌ
ሼ1, … , ݇௠௔௫ሽ. Here, ݇௠௔௫ defines the maximum number of inspections possible and inspection 
݇ is the ݇th inspection that the inspection vehicle completes. Then, once it is known which 
track is inspected in which inspection, the inspection schedule is known. For instance, the 
above inspection schedule of the network with four tracks can alternatively be defined as 
follows (considering there will be a maximum of 7 inspections within the inspection period): 
 
 
 



15 
 

Inspection 
1 

Inspection 
2 

Inspection 
3 

Inspection 
4 

Inspection 
5 

Inspection 
6 

Inspection 
7 

Track 1 Track 3 Track 2 Track 4 Track 3 Track 2 - 
 
Therefore, the decision variables of the track inspection planning problem can be introduced 
as whether a track is inspected at an inspection or not. In particular, let 
 

௜௞ݕ ൌ ൜			1	݂݅	݇ܿܽݎݐ	݅	ݏ݅	݀݁ݐܿ݁݌ݏ݊݅	݊݅	݄݁ݐ	݇
௧௛	݅݊݊݋݅ݐܿ݁݌ݏ,

																																																															,݁ݏ݅ݓݎ݄݁ݐ݋	0
 

 
and let ܻ be a ሺ݊ ൈ ݇୫ୟ୶	ሻ matrix of	ݕ௜௞ values. Considering the definition of	ݕ௜௞, the total 
number of times track	݅ ∈ ∑ is inspected is equal to ܫ ௜௞ݕ

௞೘ೌೣ
௞ୀଵ . Recall that each track	݅ ∈  ܫ

should be inspected at least ܮ௜ times; therefore, the inspection plan should guarantee that 
∑ ௜௞ݕ
௞೘ೌೣ
௞ୀଵ ൒ ݅	௜ for each trackܮ ∈   .ܫ

 
Furthermore, considering the definitions of ݕ௜௞ and ݐ௜, one can note that the inspection vehicle 
is inspecting tracks for ∑ ∑ ௜௞௜∈ூݕ௜ݐ

௞೘ೌೣ
௞ୀଵ  time units. However, it should be pointed out that 

∑ ∑ ௜௞௜∈ூݕ௜ݐ
௞೘ೌೣ
௞ୀଵ  does not include the travel times of the inspection vehicle between two 

tracks. In order to transit between two tracks and complete the inspections in an order between 
the tracks, the order variable	ݖ௜௝௞ is defined, where 
 

௜௝௞ݖ ൌ ൜1	݂݅	݇ܿܽݎݐ	݆	ݏ݅	݀݁ݐܿ݁݌ݏ݊݅	ݐ݄݃݅ݎ	ݎ݁ݐ݂ܽ	݇ܿܽݎݐ	݅	݊݅	݄݁ݐ	ሺ݇ ൅ 1ሻ௧௛	݅݊݊݋݅ݐܿ݁݌ݏ,
																																																																																																																					,݁ݏ݅ݓݎ݄݁ݐ݋	0

	 

 
and let	ܼ be the 	ሺ݊ ൈ ݊ ൈ ݇୫ୟ୶	ሻ array of	ݖ௜௝௞ values. For the schedule given in the above 
example for the railroad network with four tracks, 	ݖଵଷଵ ൌ ଷଶଶݖ	 ,1 ൌ ଶସଷݖ	 ,1 ൌ ସଷସݖ	 ,1 ൌ 1, 
and 	ݖଷଶହ ൌ 1. Then, considering the definitions of ݖ௜௝௞ and ̂ݐ௜௝ values, the total time the 

inspection vehicle spends on travelling among the tracks amounts to ∑ ∑ ∑ ௜௝௞௝∈ூ௜∈ூݖ௜௝ݐ̂
௞೘ೌೣିଵ
௞ୀଵ . 

Here, the travel time to the first inspected track is disregarded. 
 
Recall that the time between two consecutive inspections of track	݅ ∈  should be greater than ܫ
or equal to the minimum time required between two consecutive inspections of track	݅ ∈  ,ܫ
i.e., ߬௜. In particular, suppose that track	݅ ∈  is to be inspected at the ݇th inspection and let ௜ܶ௞ ܫ
be the start time of the ݇th inspection on track	݅ ∈  Then, one can show that .ܫ
 

௜ܶ௞ ൌ ෍෍ݐ௜ݕ௜௣
௜∈ூ

௞ିଵ

௣ୀଵ

൅෍෍෍̂ݐ௜௝ݖ௜௝௣
௝∈ூ௜∈ூ

௞ିଵ

௣ୀଵ

, 

 
where ݌ defines the inspections completed prior to the ݇th inspection. That is, ௜ܶ௞ is the 
summation of the inspection times of all previous inspections and the travel times among the 
previously inspected tracks plus the travel time to track	݅ ∈  .from the last inspected track 	ܫ
Furthermore, suppose that track	݅ ∈ is to be inspected at the ሺ݇ 	ܫ ൅ ݊ሻth inspection as well, 
where 1 ൑ ݊ ൑ ݇௠௔௫ െ ݇ and let ௜ܶሺ௞ା௡ሻ be the start time of the ሺ݇ ൅ ݊ሻth inspection on 
track	݅ ∈  Similarly, one can show that .ܫ



16 
 

 

௜ܶሺ௞ା௡ሻ ൌ ෍ ෍ݐ௜ݕ௜௣
௜∈ூ

௞ା௡ିଵ

௣ୀଵ

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௣
௝∈ூ௜∈ூ

௞ା௡ିଵ

௣ୀଵ

. 

 
The time between the ݇th and ሺ݇ ൅ ݊ሻ௧௛ inspections must be greater than or equal to the 
minimum time required between two consecutive inspections of track	݅ ∈ ݅	if track ,ܫ ∈  is to	ܫ
be inspected at the ݇th and ሺ݇ ൅ ݊ሻ௧௛ inspections. That is, if ݕ௜௞ ൌ ௜ሺ௞ା௡ሻݕ ൌ 1, one should 
have ௜ܶሺ௞ା௡ሻ െ ௜ܶ௞ ൒ ߬௜. In the mathematical model, this restriction is formulated as a 
constraint. 
 
At this point, the total time for inspecting tracks, including track inspection times and the 
travel times among the inspected tracks, can be calculated. Specifically, total inspection time 
as a result of inspection decisions ܻ and travelling decisions ܼ, denoted as ܶܶሺܻ, ܼሻ, amounts 
to  
 

ܶܶሺܻ, ܼሻ ൌ ෍ ෍ݐ௜ݕ௜௞
௜∈ூ

௞೘ೌೣ

௞ୀଵ

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௞
௝∈ூ௜∈ூ

௞೘ೌೣିଵ

௞ୀଵ

, 

 
where the first component defines the total time of inspecting the tracks and the second 
component defines the total travel times among the tracks on the given railroad network of 
tracks. Note that the total inspection time should be within the given length of the inspection 
period; therefore, ܶܶሺܻ, ܼሻ ൑ ܶ.  
 
If the only purpose of track inspection planning was to minimize the total time to complete the 
required inspections within the inspection period, one would simply minimize ܶܶሺܻ, ܼሻ 
subject to the total time constraint, the minimum required inspection constraints for the tracks, 
and the constraints for the minimum required times between two consecutive inspections of 
the same track. However, an inspection schedule should also maximize the possible safety 
achievements from the inspections within the inspection period. To this end, after the required 
inspections are completed, the inspection vehicle can be scheduled to inspect more tracks if 
there is time remaining. For instance, the tracks with higher importance, such as the tracks 
with passenger traffic, hazardous materials, or higher traffic volumes can have higher safety 
priorities. Therefore, if time allows, such tracks should be inspected more.  
 
To capture the importance of inspections on different tracks, a weight is defined for each 
track. In particular, let 	ݓ௜ denote the weight of the inspection importance of track	݅ ∈  The .ܫ
higher the 	ݓ௜ value is, it is more important to inspect track	݅ ∈  Therefore, an inspection plan .ܫ
should not only minimize ܶܶሺܻ, ܼሻ but also maximize the total weighted importance of the 
inspections. Considering the definitions of	ݕ௜௞ and	ݓ௜, total weighted importance as a result of 
inspection decisions ܻ, denoted as ܹܶሺܻሻ, amounts to 

ܹܶሺܻሻ ൌ ෍ ෍ݓ௜ݕ௜௞
௜∈ூ

௞೘ೌೣ

௞ୀଵ

. 

 



17 
 

 
The track inspection planning problem, TIPP, has two objectives: minimization of total 
inspection time and maximization of total weighted important. TIPP is stated as follows: 
 

 
 :ࡼࡼࡵࢀ

 
	݁ݖ݅݉݅ݔܽܯ
 
 
 
 ݁ݖ݅݉݅݊݅ܯ
 

ܹܶሺܻሻ ൌ ෍ ෍ݓ௜ݕ௜௞
௜∈ூ

௞೘ೌೣ

௞ୀଵ

 

 

ܶܶሺܻ, ܼሻ ൌ ෍ ෍ݐ௜ݕ௜௞
௜∈ூ

௞೘ೌೣ

௞ୀଵ

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௞
௝∈ூ௜∈ூ

௞೘ೌೣିଵ

௞ୀଵ

 

 

  
 
 ݐ݄ܽݐ	݄ܿݑݏ

 

෍ ௜௞ݕ

௞೘ೌೣ

௞ୀଵ

൒ ,௜ܮ ∀݅ ∈  ܫ
(1) 

   

෍ ෍ݐ௜ݕ௜௞
௜∈ூ

௞೘ೌೣ

௞ୀଵ

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௞
௝∈ூ௜∈ூ

௞೘ೌೣିଵ

௞ୀଵ

൑ ܶ 
(2) 

   

෍ݕ௜௞
௜∈ூ

൑ 1	∀݇ ∈  (3) ܭ

   
௜௝௞ݖ ൑ ,௜௞ݕ ∀݅, ݆ ∈ ;ܫ ∀݇ ∈ ሾ1,… , ݇௠௔௫ െ 1ሿ (4) 

   
௜௝௞ݖ ൑ ,௝ሺ௞ାଵሻݕ ∀݅, ݆ ∈ ;ܫ ∀݇ ∈ ሾ1,… , ݇௠௔௫ െ 1ሿ (5) 

   
௜௝௞ݖ ൒ ௜௞ݕ ൅ ௝ሺ௞ାଵሻݕ െ 1, ∀݅, ݆ ∈ ;ܫ ∀݇ ∈ ሾ1,… , ݇௠௔௫ െ 1ሿ 
 

(6) 

  
෍ ෍ݐ௜ݕ௜௣

௜∈ூ

௞ା௡ିଵ

௣ୀ௞

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௣
௝∈ூ௜∈ூ

௞ା௡ିଵ

௣ୀ௞

൒ ߬௜ ൅ ௜௞ݕ൫ܯ ൅ ௜ሺ௞ା௡ሻݕ െ 2൯, ∀݅ ∈ ;ܫ 	∀݇
∈ ሾ1,… , ݇௠௔௫ െ 1ሿ; ∀݊ ∈ ሾ1,… , ݇௠௔௫ െ ݇ሿ 

 

(7) 

௜௞ݕ   ∈ ሼ0,1ሽ, ∀݅ ∈ ,ܫ ∀݆ ∈ ,ܫ (8) 
௜௝௞ݖ   ∈ ሼ0,1ሽ, ∀݅ ∈ ,ܫ ∀݆ ∈ ,ܫ ∀݇ ∈  (9) ܭ
 
 
Constraints given in Equation (1) ensure that the inspection plan is designed such that each 
track on the railroad network is inspected by at least the minimum number of required 
inspections. The constraint given in Equation (2) guarantees that the total inspection time is 
less than or equal to the length of the inspection period. The constraints given in Equation (3) 
enforce that at each inspection, at most one inspection is completed. Note that the 
mathematical model considers the maximum number of inspections and some of the 



18 
 

inspections will not be executed due to the length of the inspection period. Constraints given 
in Equation (4) restrict inspection of a track unless the inspection vehicle travels to that track 
from the previously inspected track. Similarly, constraints given in Equation (5) restrict the 
inspection of a track unless the inspection vehicle moves to the next track that will be 
inspected. Constraints given in Equation (6) define the travelling schedule of the inspection 
vehicle. Particularly, if inspection vehicle is travelling from track ݅ to track ݆ after inspection 
௜௞ݕ ௜௝௞ has to be 1 by definition. That is, ifݖ ,݇ ൌ 1 and	ݕ௝ሺ௞ାଵሻ ൌ 1, Equation (6) forces 
௜௝௞ݖ ൌ 1. On the other hand, if ݕ௜௞ ൅ ௝ሺ௞ାଵሻݕ ൑  ௜௝௞ can be 0 or 1. At this case, Equationsݖ ,1
(5) and (4) will define ݖ௜௝௞ accordingly. Constraints given in Equation (7) prevent the time 
between two consecutive inspections of the same track to be less than the specified time 
between the consecutive inspections of that track. In particular, recall that the time of start for 
the ݇th inspection on track ݅ is ௜ܶ௞ ൌ ∑ ∑ ௜௣௜∈ூݕ௜ݐ

௞ିଵ
௣ୀଵ ൅ ∑ ∑ ∑ ௜௝௣௝∈ூ௜∈ூݖ௜௝ݐ̂

௞ିଵ
௣ୀଵ , and similarly, 

the start time of the ሺ݇ ൅ ݊ሻ௧௛ inspection on the same track is	 ௜ܶሺ௞ା௡ሻ ൌ ∑ ∑ ௜௣௜∈ூݕ௜ݐ
௞ା௡ିଵ
௣ୀଵ ൅

∑ ∑ ∑ ௜௝௣௝∈ூ௜∈ூݖ௜௝ݐ̂
௞ା௡ିଵ
௣ୀଵ . The time between the ݇th inspection and ሺ݇ ൅ ݊ሻ௧௛ inspection must 

be greater than the minimum time required between two consecutive inspections of that 
particular track, i.e., ߬௜. That is, if ݕ௜௞ ൌ ௜ሺ௞ା௡ሻݕ ൌ 1, one should have ௜ܶሺ௞ା௡ሻ െ ௜ܶ௞ ൒ ߬௜. On 
the other hand, if ݕ௜௞ ൅ ௜ሺ௞ା௡ሻݕ ൑ 1, there should not be a restriction on ௜ܶሺ௞ା௡ሻ െ ௜ܶ௞. 
Therefore, Equation (7) forces  
 

෍ ෍ݐ௜ݕ௜௣
௜∈ூ

௞ା௡ିଵ

௣ୀ௞

൅ ෍ ෍෍̂ݐ௜௝ݖ௜௝௣
௝∈ூ௜∈ூ

௞ା௡ିଵ

௣ୀ௞

൒ ߬௜ ൅ ௜௞ݕ൫ܯ ൅ ௜ሺ௞ା௡ሻݕ െ 2൯, ∀݊ ∈ ሾ1,… , ݇௠௔௫ െ ݇ሿ 

 
where ܯ is a large number (one can use the length of the inspection period, ܶ, for ܯ). Note 
that, if ݕ௜௞ ൌ ௜ሺ௞ା௡ሻݕ ൌ 1, it means that ݕ௜௞ ൅ ௜ሺ௞ା௡ሻݕ ൌ 2; thus, Equation (7) implies that 

௜ܶሺ௞ା௡ሻ െ ௜ܶ௞ ൒ ߬௜. On the other hand, if ݕ௜௞ ൅ ௜ሺ௞ା௡ሻݕ ൑ 1, Equation (7) implies that 

௜ܶሺ௞ା௡ሻ െ ௜ܶ௞ ൒ െܯ, which is true by definition as the ሺ݇ ൅ ݊ሻ௧௛ inspection cannot start 
before the ݇th inspection. Finally, constraints defined in Equation (8) are the binary restrictions 
of the inspection decisions and the constraints defined in Equation (9) are the binary 
restrictions of the travelling decisions.  
 
In the next section, a solution method is developed to solve TIPP. Note that ܶ, ݓ௜, ݐ௜, ߬௜, ܮ௜, 
and ̂ݐ௜௝ values of the railroad network are input for TIPP. The output of TIPP will be ܻ	ܽ݊݀	ܼ 
variables, which define an inspection schedule for the inspection vehicle. 
 

3. SOLUTION ANALYSIS 

 
TIPP is a binary bi-objective optimization problem. Two common methods for solving multi-
objective optimization problems are to reduce the multi-objective model into a single-
objective model and generating a set of Pareto efficient solutions. One can reduce the bi-
objective model into a single objective model by assigning weights to the objective functions 
and adding them to have the single objective or formulating a single-objective model that 
minimizes the maximum deviation from the optimum solutions of the individual objectives. In 



19 
 

this project, we will use the later method by adapting an evolutionary heuristic algorithm to 
approximate a set of Pareto efficient solutions.  
 
Pareto-Front is the set of Pareto efficient solutions for multi-objective optimization problems. 
A solution is defined to be Pareto efficient if there is no other solution that is better in terms of 
all of the objectives. In particular, the following formal definition is used: 
 

A track inspection schedule ሺܻ∗, ܼ∗ሻ is Pareto efficient if there exists no other track 
inspection schedule ሺܻ, ܼሻ such that ܶܶሺܻ, ܼሻ ൑ ܶܶሺܻ∗, ܼ∗ሻ and	ܹܶሺܻ, ܼሻ ൒
ܹܶሺܻ∗, ܼ∗ሻ. 

 
Approximating a Pareto-Front for multi-objective optimization models gives a set of solutions 
to the decision maker, among which the decision maker can select a solution. However, 
approximating a Pareto-Front for multi-objective binary-programming models is challenging. 
It should be noted that even with a single objective, TIPP is a complex optimization problem. 
Therefore, heuristic algorithms are commonly used for such optimization problems. 
Specifically, due to the binary definitions of the decision variables of TIPP, evolutionary 
methods such as genetic algorithms can be efficiently used to approximate a Pareto-Front for 
TIPP. 
 
In what follows, a genetic algorithm is developed for TIPP. Prior to discussing the details of 
this genetic algorithm, it should be noted that a simple dynamic heuristic method can be used 
to solve TIPP in absence of the modeling approach given in this project. This dynamic 
approach, which is referred to as greedy heuristic, iteratively schedules inspections for the 
inspection vehicle. Therefore, the details of the greedy heuristic are explained next before 
developing the genetic algorithm. 
 

3.1.Greedy Heuristic Approach 
 
Greedy heuristic approach is a very simple and naïve method that can create feasible track 
inspection schedules. Specifically, given an inspected track, the greedy heuristic determines 
the next track to be inspected. This process is repeated until all of the tracks inspected at least 
the minimum required number of times or the inspection period ends. Considering the two 
objectives of the track inspection planning problem, two greedy heuristics can be defined: time 
minimizing and weight maximizing. In both of the approaches, the following parameters are 
used in the algorithmic descriptions of the greedy heuristic approaches: 
 

 ܶܥ : current time, i.e., the time spent until the inspection completion at the current 
track 

 ݎ௝ : the remaining number of inspections for track ݆ 
 ݐݏ݌௝: possible start time for track ݆ as the next track to be inspected 
 ݐ݂݌௝: possible finish time for track ݆’s inspection as the next track to be inspected 
 ݈݅ݐ௝: completion time of track ݆’s latest inspection 

 
Now, suppose that the last track inspected is track	݅; then, the following equations hold true: 
 



20 
 

 ܶܥ ൌ  ,௜ݐ݈݅
 ݐݏ݌௝ ൌ ܶܥ ൅  ,௜௝ݐ̂
 ݐ݂݌௝ ൌ ܶܥ ൅ ௜௝ݐ̂ ൅  .௝ݐ

 
Track ݆ can be the next track to be inspected if there has passed sufficient time from its latest 
inspection and the possible finish time is within the inspection period. That is, if ݐݏ݌௝ ൒ ௝ݐ݈݅ ൅
௝߬ and ݐ݂݌௝ ൑ ܶ, track ݆ can be inspected next since the time between two consecutive 

inspections of track ݆ will be greater than the minimum required time between two consecutive 
inspections of track ݆ as well as its inspection can be completed within the inspection period. 
Depending on the next track selection criteria, the greedy heuristic approaches will iteratively 
select next tracks for inspection and update the current time (ܶܥ), possible start times of the 
tracks (ݐݏ݌௝ሻ, possible finish times of the tracks (ݐ݂݌௝), the latest completion times of the 
tracks (݈݅ݐ௝), and the remaining inspections of the tracks (ݎ௝). Note that if ݎ௝ ൌ 0 for all tracks, 
then the minimum numbers of required inspections on all tracks are completed. Therefore, in 
the iterative selection processes for the next track, the greedy heuristic approaches first 
considers the tracks such that ݐݏ݌௝ ൒ ௝ݐ݈݅ ൅ ௝߬, ݐ݂݌௝ ൑ ܶ, and ݎ௝ ൒ 1 as the next track to be 
inspected. If there is no track with remaining inspections that can be the next track to be 
inspected due to their minimum time requirement between two consecutive inspections or 
their late completion times, the next track can be selected from the tracks with no remaining 
inspections. 
 

3.1.1. Time Minimizing Greedy Heuristic 
 
In the time minimizing greedy heuristic, starting from a randomly selected track, the next track 
to be inspected will be the one with the least travel time from the current track plus inspection 
time within the set of tracks that can be inspected next considering the time constraint between 
two consecutive inspections of the same track and its remaining inspections. If there is no 
feasible track available to be the next track with remaining inspections, the next track selected 
is the one with the least travel time plus inspection time among the feasible tracks with no 
remaining inspections. The details of the time minimizing greedy heuristic are as follows: 
 

 Time Minimizing Greedy Scheduler: 
1. Let ܶ, ݓ௜, ݐ௜, ߬௜, ܮ௜, and ̂ݐ௜௝ values be given. 
2. Set ܶܥ ൌ 0 and ݇ ൌ 1. 
3. For each track ݆ such that ݆ ∈  ܫ

 Let ݐݏ݌௝ ൌ ௝ݐ݂݌	,0 ൌ ௝ݐ݈݅	,௝ݐ ൌ െܶ, ݎ௝ ൌ  ௝ܮ
4. Let track	݅ such that ݅ ∈   .be randomly selected ܫ
5. Set ݕ௜௞ ൌ 1 and ݕ௝௞ ൌ 0 for ݆ such that ݆ ് ݅. 

 Let ܶܥ ൌ ௜ݐ݈݅ ,௜ݐ ൌ ௜ݐݏ݌ ,ܶܥ ൌ ௜ݐ݂݌ ,ܶܥ ൌ ܶܥ ൅ ௜ݎ ௜, andݐ ൌ ௜ܮ െ 1 
 Define greedy index for track ݅ as ݃௜ ൌ ܶ 

6. For each track ݆ such that ݆ ് ݅, 
 Calculate ݐݏ݌௝ ൌ ܶܥ ൅ ௝ݐ݂݌ ,௜௝ݐ̂ ൌ ܶܥ ൅ ௜௝ݐ̂ ൅  ௝ݐ
 Define greedy index for track ݆ as ݃௝ ൌ ௜௝ݐ̂ ൅  ௝ݐ



21 
 

7. Determine the set of feasible tracks with remaining inspections, ܫܴݓܶܨ, such 
that ܫܴݓܶܨ ൌ ሼ݆: ௝ݐݏ݌ ൒ ௝ݐ݈݅ ൅ ௝߬, ௝ݐ݂݌ ൑ ܶ, ௝ݎ ൒ 1ሽ. 
 If ܫܴݓܶܨ ൌ ∅,  

 If ݉ܽݔ௝൛ݎ௝ൟ ൌ 0,	go to Step 8 
 Else, determine the set of feasible tracks, ܶܨ, such that ܶܨ ൌ

ሼ݆: ௝ݐݏ݌ ൒ ௝ݐ݈݅ ൅ ௝߬, ௝ݐ݂݌ ൑ ܶሽ. 
o If ܶܨ ൌ ∅, go to Step 8. 
o Else, let ݅ ൌ :ሼ݃௝݊݅݉݃ݎܽ ݆ ∈ ݇ ሽ and setܶܨ ൌ ݇ ൅ 1 and 

go to Step 5. 
 Else, let ݅ ൌ :ሼ݃௝݊݅݉݃ݎܽ ݆ ∈ ݇ ሽ and setܫܴݓܶܨ ൌ ݇ ൅ 1. 

 Go to Step 5. 
8. Return ݕ௜௞ values. 

 
Note that the time minimizing greedy heuristic terminates in case of the following situations: 
when there is no more required inspection left, the algorithm terminates as additional 
inspection would increase the total time  or when there is no track that can be inspected as the 
next track, the algorithm terminates as additional inspection would not be completed within 
the inspection period. In the former case, a feasible schedule is determined. On the other hand, 
in the latter case, a feasible schedule is not determined due to the starting track. Therefore, in 
termination, if max൛݆: ௝ൟݎ ൒ 1, one can set ܶܶሺܻ, ܼሻ ൌ ∞ and	ܹܶሺܻ, ܼሻ ൌ െ∞. Otherwise, if 
௝ൟݎ௝൛ݔܽ݉ ൌ 0,	a feasible schedule is determined. In such a case, once ݕ௜௞ values are returned, 
௜௞ݕ ௜௝௞ values can be easily determined. In particular, ifݖ ൌ 1 and	ݕ௝ሺ௞ାଵሻ ൌ ௜௝௞ݖ ,1 ൌ 1. 
Therefore, ܶܶሺܻ, ܼሻ and	ܹܶሺܻ, ܼሻ values can be calculated. Starting the time minimizing 
greedy heuristic scheduler with each track being the first track to be inspected, at most ݊ 
number of inspection schedules can be determined. 
 

3.1.2. Weight Maximizing Greedy Heuristic 
 
In the weight maximizing greedy heuristic, the only difference from the time maximizing 
greedy heuristic is that instead of selecting the next track to be inspected as the track with the 
minimum travel time from the current track plus the inspection time, the next track to be 
inspected is selected as the one with the maximum weight from the set of feasible tracks with 
remaining inspections. If the set of feasible tracks with remaining inspections is empty, unlike 
the time minimizing greedy heuristic, the weight maximizing greedy heuristic continues to 
schedule track inspections. The main termination criteria is exceeding the total time of the 
inspection period. The details of the weight maximizing greedy heuristic are as follows: 
 

 Weight Maximizing Greedy Scheduler: 
1. Let ܶ, ݓ௜, ݐ௜, ߬௜, ܮ௜, and ̂ݐ௜௝ values be given. 
2. Set ܶܥ ൌ 0 and ݇ ൌ 1. 
3. For each track ݆ such that ݆ ∈  ܫ

 Let ݐݏ݌௝ ൌ ௝ݐ݂݌	,0 ൌ ௝ݐ݈݅	,௝ݐ ൌ െܶ, ݎ௝ ൌ  ௝ܮ
4. Let track	݅ such that ݅ ∈   .be randomly selected	ܫ
5. Set ݕ௜௞ ൌ 1 and ݕ௝௞ ൌ 0 for ݆ such that ݆ ് ݅. 

 Let ܶܥ ൌ ௜ݐ݈݅ ,௜ݐ ൌ ௜ݐݏ݌ ,ܶܥ ൌ ௜ݐ݂݌ ,ܶܥ ൌ ܶܥ ൅ ௜ݎ ௜, andݐ ൌ ௜ܮ െ 1 



22 
 

 Define greedy index for track ݅ as ݃௜ ൌ െݓ௜ 
6. For each track ݆ such that ݆ ് ݅, 

 Calculate ݐݏ݌௝ ൌ ܶܥ ൅ ௝ݐ݂݌ ,௜௝ݐ̂ ൌ ܶܥ ൅ ௜௝ݐ̂ ൅  ௝ݐ
 Define greedy index for track ݆ as ݃௝ ൌ  ௝ݓ

7. Determine the set of feasible tracks with remaining inspections, ܫܴݓܶܨ, such 
that ܫܴݓܶܨ ൌ ሼ݆: ௝ݐݏ݌ ൒ ௝ݐ݈݅ ൅ ௝߬, ௝ݐ݂݌ ൑ ܶ, ௝ݎ ൒ 1ሽ. 
 If ܫܴݓܶܨ ൌ ∅,  

 If ݉݅ ௝݊൛ݐ݂݌௝ൟ ൒ ܶ,	go to Step 8 
 Else, determine the set of feasible tracks, ܶܨ, such that ܶܨ ൌ

ሼ݆: ௝ݐݏ݌ ൒ ௝ݐ݈݅ ൅ ௝߬, ௝ݐ݂݌ ൑ ܶሽ. 
o If ܶܨ ൌ ∅, go to Step 8. 
o Else, let ݅ ൌ :ሼ݃௝݊݅݉݃ݎܽ ݆ ∈ ݇ ሽ and setܶܨ ൌ ݇ ൅ 1 and 

go to Step 5. 
 Else, let ݅ ൌ :ሼ݃௝݊݅݉݃ݎܽ ݆ ∈ ݇ ሽ and setܫܴݓܶܨ ൌ ݇ ൅ 1. 

 Go to Step 5. 
8. Return ݕ௜௞ values. 

 
Note that the weight maximizing greedy heuristic terminates in case of the following 
situations: when there is no time left to complete another inspection or when there is no track 
that can be inspected as the next track. Therefore, at termination, a feasible schedule is 
determined if ݉ܽݔ௝൛ݎ௝ൟ ൌ 0. If max൛݆: ௝ൟݎ ൒ 1, one can set ܶܶሺܻ, ܼሻ ൌ ∞ and	ܹܶሺܻ, ܼሻ ൌ
െ∞. Otherwise, once ݕ௜௞ values are returned, ݖ௜௝௞ values can be easily determined and 
ܶܶሺܻ, ܼሻ and	ܹܶሺܻ, ܼሻ values can be calculated. Starting the weight maximizing greedy 
heuristic scheduler with each track being the first track to be inspected, at most ݊ number of 
inspection schedules can be determined. 
 
Applying these two greedy approaches with each track as the starting track, one can generate 
at most 2݊ track inspection schedules. Using the Pareto front generation method that will be 
detailed for the genetic algorithm, one can select the Pareto efficient solutions from this set of 
at most 2݊ schedules as the output of the greedy heuristic approach. Next, the details of the 
genetic algorithm are explained. 
 

3.2.Genetic Algorithm Approach 
 
There are four main steps of the genetic algorithm: chromosome representation and 
initialization, fitness evaluation, mutation, and termination. The details of these steps are as 
follows. 
 

3.2.1. Chromosome Representation and Initialization 
 
The decision variables	ܻ and	ܼ in TIPP can be shown in the sequence of a chromosome’s 
genes. This representation will help satisfy the ordering constraints defined in Equations (4), 
(5), and (6). Furthermore, by considering only ܻ variables, one can easily calculate the values 
of the ܼ variables in the model as discussed for the greedy heuristic. However, the 
chromosome will become a matrix of zeroes and ones (with one 1 in each column); hence, it 



23 
 

will be a very large matrix.  To tackle this problem, an integer representation for chromosomes 
is chosen. In this representation, every gene is an integer number that represents a track 
number and the whole chromosome shows the sequence of tracks that need to be inspected. 
Integer representation not only satisfies the ordering constraints, but also it satisfies the 
constraints given in Equation (3), which allow at most one inspection at a time for each 
inspection.  
 
For example, suppose that the set of tracks is ܫ ൌ ሼ1,2,3,4ሽ and the minimum inspections 
required for each track is	ܮ ൌ ሼ2,3,1,1ሽ. This means that the track 1 needs to be inspected at 
least twice, track 2 needs to be inspected at least three times and tracks 3 and	4 need at least 
one inspection. Some chromosomes that can convey a solution to this problem are illustrated 
in Figure 2 (note that, for illustration purposes, these chromosomes ignore the time constraint 
between two consecutive inspections of the same tracks). 
 

Chromosome 1: 2 1 2 3 2 1 4 
Chromosome 2: 1 2 3 1 2 4 1 3 2 4 

Figure 2. Examples of Integer representation of a chromosome 
 
In Chromosome 1, track 1 is inspected twice, track 2 is inspected 3 times, track 3 is inspected 
once, and track 4 is inspected once. Specifically, first track 2 is inspected, then track 1, then 
track 2 again, then track 3, then track 2 again, then track 1 again, and then track 4 are 
inspected. Therefore, the order of inspections defined in the chromosome. Note that, in 
Chromosome 1, the number of times each track is inspected is equal to the minimum number 
of inspections required for each track. In Chromosome 2, on the other hand, track 1 is 
inspected 3 times, track 2 is inspected 3 times, track 3 is inspected twice, and track 4 is 
inspected twice, which is possible if the inspection period is long enough. 
 
To initiate the genetic algorithm, a set of feasible chromosomes should be generated as the 
initial population. Note that the representation of the chromosome is already satisfying 
constraints stated in Equations (3), (4), (5), (6), (8), and (9) in TIPP. Therefore, in creating a 
feasible chromosome, one should focus on satisfying the constraints stated in Equation (1), 
i.e., the minimum inspection requirements for the tracks, the constraint defined in Equation 
(2), i.e., the length of the inspection period, and the constraints defined in Equation (7), i.e., 
the minimum time between two consecutive inspections of the same tracks. In creating 
chromosomes, we initially ignore the length of the inspection period. This constraint will be 
accounted for in the fitness evaluation step. Initial focus is on accounting for the constraints 
given in Equations (1) and (7). To do so, we use a dynamic approach for generating a feasible 
chromosome. Particularly, we add genes to a chromosome one by one until a feasible 
chromosome is generated. Note that each gene of a chromosome represents an inspection, and 
the value of the gene is the track inspected at that inspection. The details of generating a 
feasible chromosome are as follows. 
 
First, we randomly select the track to be inspected at the first inspection. Here, we define and 
update the following statistics as we generate the next tracks to be inspected. 
 



24 
 

 The spent time (ST): The spent time calculates the time of inspections plus the travel 
times in the whole process. The spent time is updated at the end of each gene addition. 
This is defined as ܶܥ in the greedy heuristic algorithms. 

 The earliest start times (EST): After each gene generation (that is, after each 
inspection), an earliest start time is defined for each track. The earliest start time for a 
track represents the time when an inspection can start on that track after the current 
inspection. Particularly, the earliest start time of track ݅ as the next inspection is equal 
to the time the inspection at the last track is completed, i.e., the current spent time, plus 
the time to travel from the last inspected track to track	݅. This is defined similar to 
possible start time defined for the greedy heuristic algorithms. In particular, if track ݆ is 
the last inspected track, earliest start time for track ݅ is equal to 
 

௜ݐݏ݁ ൌ ܵܶ ൅  .௝௜ݐ̂
 

 The latest start time (LST): Each time a gene is added to the chromosome, we update 
the latest start time of the track added. The latest start time for track ݅ represents the 
time when the last inspection of track ݅ was completed. For instance, if the next gene to 
be added to the chromosome is track ݅, we will check whether the time between the 
earliest start of track ݅ and the latest start time of track ݅ is greater than or equal to the 
time needed between two consecutive inspections of track ݅, i.e., ߬௜. If so, track ݅ can 
be inspected as the next track, otherwise, it cannot be inspected at the next inspection. 
If inspected, the latest start time of track ݅ is updated. This is defined similar to latest 
inspection time defined for the greedy heuristic algorithms. 

 Left inspections (gtl): After each time a track is inspected, we calculate the remaining 
inspections left for each track. Left inspections will be used in choosing the next track 
to be inspected, i.e., the next gene to be added to the chromosome. This is defined 
similar to the remaining inspections defined for the greedy heuristic algorithms. 

 
The following routines are used to generate feasible chromosomes. Particularly, Routine 1 
creates a part of chromosome with ݉ genes using gtl (in Routine 1, ݃݀ݐ is initially defined 
identical to ݈݃ݐ to randomize the order of tracks to be inspected in the case the current order of 
genes in ݈݃ݐ cannot generate ݉ genes). Then, Routine 2 is using Routine 1 to generate a 
feasible chromosome. Initially, we generate ݊ chromosomes as the first population. 
 

Routine 1: Create Parts of A Chromosome: 
Step 1: Set ݃ ൌ  |݁݉݋ݏ݋݉݋ݎ݄ܿ|
Step 2: Constitute ݈݃ݐ and let ݃݀ݐ ൌ  ݈ݐ݃
Step 3: Set ܿݎ݁ݐ݊ݑ݋ ൌ 0 
Step 4: While ܿݎ݁ݐ݊ݑ݋ ൑ ݉ 
Step 5:  ݕ ൌ  ሺ1ሻ݈ݐ݃
Step 6:  ܶܵܧ ൌ ܵܶ ൅ ,ሺ݃ሻ݁݉݋ݏ݋݉݋ݎሺ݄ܿݐ̂  ሻݕ
Step 7:  if ܶܵܧ െ ሻݕሺܶܵܮ ൒ ߬ሺݕሻ 
Step 8:   ݄ܿ݉݋ݎ ൌ ݉݋ݎ݄ܿ ൅ ሼݕሽ 
Step 9:   ܶܵܮሺݕሻ ൌ  ܶܵܧ
Step 10:   ܵܶ ൌ ܶܵܧ ൅  ሻݕሺݐ
Step 11:   Randomize elements of ݈݃ݐ 



25 
 

Step 12:   ݃ ൌ ݃ ൅ 1 
Step 13:   ܿݎ݁ݐ݊ݑ݋ ൌ ݎ݁ݐ݊ݑ݋ܿ ൅ 1 
Step 14:  else ݈݃ݐ ൌ ݈ݐ݃ െ ሼݕሽ	
Step 15:  if ݈݃ݐ ൌ ∅ 
Step 16:   ݈݃ݐ ൌ  ݀ݐ݃
Step 17: Return	݄ܿ,݁݉݋ݏ݋݉݋ݎ	ܶܵܮ and ܵܶ 

 
Routine 2: Create A Feasible Chromosome:  
Step 1: Set	݅݊ݏ݊݋݅ݐܿ݁݌ݏ ൌ ሼ0,… ,0ሽ, ܶܵܮ ൌ െ߬ 
Step 2: Set ݔ ൌ ݁݉݋ݏ݋݉݋ݎ݄ܿ and ݎ݁݃݁ݐ݊݅	݉݋݀݊ܽݎ ൌ  ݔ
Step 3: Set ܵܶ ൌ ሻݔሺݏ݊݋݅ݐܿ݁݌ݏ݊݅ ሻ andݔሺݐ ൌ ሻݔሺݏ݊݋݅ݐܿ݁݌ݏ݊݅ ൅ 1 
Step 4: While ݉ݑݏሺܮ ൐ ሻݏ݊݋݅ݐܿ݁݌ݏ݊݅ ൐ 0 
Step 5:  Execute Routine 1 
Step 6: Return	݄ܿ,݁݉݋ݏ݋݉݋ݎ	ܶܵܮ, ܵܶ and 	݅݊ݏ݊݋݅ݐܿ݁݌ݏ 

 
3.2.2. Fitness Evaluation 

 
Suppose	ܹܶ and	ܶܶ are the total weighted inspections and the total time regarding the 
chromosome, respectively, and ܱ is a feasible chromosome (solution) for	ࡼࡼࡵࢀ. Now, 
suppose a set of solutions	ܴ as a population of chromosomes is given such that	ܱ௥ denotes the 
 ܴ, the purpose is to select the best	ܴ. In fitness evaluation of population	௧௛ solution inݎ
chromosomes in the set. Since the problem has two objectives, we focus on generating the 
Pareto efficient solutions out of a given population. A solution is Pareto efficient if it is not 
dominated by another solution. Considering the minimization of ܶܶ and maximization of ܹܶ 
and two solutions	ܱ௦ and	ܱ௥, unless	ሺܶܶ௦, ܹܶ௦ሻ ൌ ሺ	ܶܶ௥, ܹܶ௥ሻ, ܱ௦ Pareto dominates	ܱ௥ if 
ܶܶ௦ ൑ ܶܶ௥ and	ܹܶ௦ ൒ ܹܶ௥. Considering this, the following routine can be used to generate 
all Pareto efficient solutions denoted by	ܲܧሺܴሻ from a given set of solutions	ܴ.  
 

Routine 3: Determining	ܲܧሺܴሻ:  
Step 1:  Set ݏ ൌ 1 
Step 2:  While ݏ ൑ |ܴ| െ 1 
Step 3:  Set ݎ ൌ ݏ ൅ 1 
Step 4:  While ݎ ൑ |ܴ| 
Step 5:   Unless 	ሺܶܶ௦, ܹܶ௦ሻ ൌ ሺ	ܶܶ௥, ܹܶ௥ሻ 
Step 6:     if ܶܶ௦ ൑ ܶܶ௥ and	ܹܶ௦ ൒ ܹܶ௥  
Step 7:     Set ܴ ൌ ܴ െ ሼܱ௥ሽ and ݎ ൌ ݎ െ 1 
Step 8:    if ܶܶ௦ ൒ ܶܶ௥ and	ܹܶ௦ ൑ ܹܶ௥ 
Step 9:     Set ܴ ൌ ܴ െ ሼܱ௦ሽ and ݏ ൌ ݏ െ 1 and ݎ ൌ |ܴ| ൅ 1 
Step 10:  Set ݎ ൌ ݎ ൅ 1 
Step 11: Set ݏ ൌ ݏ ൅ 1 
Step 12: Return ܲܧሺܴሻ ൌ ܴ 

 
Then, given a population	ܴ, ܲܧሺܴሻ is the set of parent chromosomes for the next population. 
Before continuing with the mutation step, we eliminate the chromosomes with ܶܶ values that 
are greater than the inspection period. That is, if a chromosome ܱ௥ such that ܱ௥ ∈  ሺܴሻ hasܧܲ
ܶܶ௥ ൐ ܶ, this chromosome is removed from ܲܧሺܴሻ and we have ܲܧሺܴሻ ൌ ሺܴሻܧܲ െ ሼܱ௥ሽ.  



26 
 

 
3.2.3. Mutation 

 
One important step of the genetic algorithm is mutation. After fitness evaluation of a 
population, the chromosomes in the next population are created by mutating the parent 
chromosomes of the current population. That is, Pareto efficient solutions in the current 
population will go through mutation operations to create children. Next population will 
include both the set of parents of the chromosomes and the children created with mutation. 
Having the parent chromosomes within the next population guarantees that the Pareto-Front is 
not worsening over the populations. Furthermore, we add randomly generated feasible 
chromosomes into the population. This will avoid getting stuck in local Pareto-Fronts. 
  
The mutation operation works as follows. Given a parent chromosome, we first segment it into 
several parts, let’s say ݌ parts. Then, a mutation operation is applied to each part of the parent 
chromosome. Particularly, we randomly select a gene from the part of the parent chromosome 
and assume that the part of the parent chromosome from the beginning to this gene is fixed. 
Then, we create a feasible chromosome starting from the selected gene using Routine 1. 
Routine 4 describes the mutation operation for a given parent chromosome. 
 

Routine 4: Mutation 
Step 1: For ݅ ൌ 1:  ݌
Step 2:  Set ݎ:ൌ  ݉݋݀݊ܽݎ
Step 3:  Set ݄݈ܿ݅݀݊݁ݎሺ݅ሻ: ൌ ,ሺ݅ݐ݊݁ݎܽ݌ 1:  ሻݎ
Step 4:  While minሺܮ െ ሻݏ݊݋݅ݐܿ݁݌ݏ݊݅ ൐ 0 
Step 5:   Routine 1 
Step 6: Return ݄݈ܿ݅݀݊݁ݎ ൌ ሼ݄݈ܿ݅݀݊݁ݎሺ݅ሻ:	∀݅ሽ 

 
Therefore, each parent chromosome generates p new chromosomes. The newly generated 
chromosomes plus the parent chromosomes constitute the next population. 
 

3.2.4. Termination 
 
If the set of ܲܧሺܴሻ does not change for a given number of populations, for example for ݇ 
times, the algorithm stops and the Pareto-Front of the last population will be returned as the 
set of alternative solutions to the decision maker. A flow chart for the genetic algorithm is 
presented in Figure 3. 
 
 
 
 
 
 
 
 
 
 



27 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Genetic Algorithm Flow Chart 
 
 

Yes 

Determine the Pareto efficient 
solutions in the current 

population using Routine 3 to 
be the parent chromosomes 

Generate a set of 
chromosomes using 
Routines 1 & 2 to 
create a population 

No 

Yes 

No 

Is the set of 
parents the 

same? 

Set ܿݎ݁ݐ݊ݑ݋ ൌ 0. 

Mutate parent chromosomes 
using Routine 4 and set the 
current population as the 

mutant plus the parent 
chromosomes 

Set ܿݎ݁ݐ݊ݑ݋ ൌ ݎ݁ݐ݊ݑ݋ܿ ൅ 1 

Is counter less 
than ݇? 

Return the parent 
chromosomes as the set 

of Pareto efficient 
solutions of TIPP 

Yes 



28 
 

4. NUMERICAL STUDIES 

 
In this section, the genetic algorithm is used to solve track inspection planning problem on 
different railroad networks. The convergence properties of the genetic algorithm are analyzed. 
Furthermore, the genetic algorithm is compared to the greedy heuristic method. Recall that 
there are two greedy heuristic schedulers, time minimizing and weight maximizing. One can 
use these schedulers to generate a set of track inspection schedules (note that at most ݊ 
schedules will be constructed with each greedy approach). Then, Routine 3 can be used to 
determine the Pareto efficient inspection schedules out of these schedules.  
 
In this section, we randomly generate 10 problem instances for different sizes of railroad 
networks. Specifically, we consider railroad networks with number of tracks equal to ݊ ൌ
ሼ100, 150, 200, 250, 300, 350, 400, 450, 500ሽ. The problem parameters are randomly 
generated from uniform distributions denoted as ܷሾܽ, ܾሿ where ܽ is the lower bound of the 
distribution and ܾ is the upper bound of the distribution. 

 Minimum number of required inspections on the tracks are defined to be between 1 
and 5, that is, it is assumed that ܮ௜~ܷሾ1,5ሿ. 

 Inspection time of a track is defined to be between 2 and 4 hours, that is, it is assumed 
that ݐ௜~ܷሾ2,4ሿ. 

 Minimum time required between two consecutive inspections on a track is defined to 
be between 25 and 250 hours (i.e., 1 to over 10 days), that is, it is assumed that 
߬௜~ܷሾ25,250ሿ. 

 Travel time between two tracks is defined to be between 0.5 and 6 hours (considering 
that a vehicle can travel from one point to the furthest point within Missouri in 6 
hours), that is, it is assumed that ̂ݐ௜௝~ܷሾ0.5,6ሿ. 

 The importance weight of a track is defined to be between 0 and 1, that is, it is 
assumed that ݓ௜~ܷሾ0,1ሿ. 

 The length of the inspection period will heavily depend on the number of tracks to be 
inspected on the railroad network. Therefore, in defining the length of the inspection 
period, we accept the maximum total inspection time resulted by the greedy heuristic 
as the inspection period length. 

 
Two sets of numerical analysis are considered: convergence of the genetic algorithm and 
comparison of the genetic algorithm to the greedy heuristic algorithm. All of the algorithms 
(and the routines needed in them) are coded in Matlab 2014a. Furthermore, the problem 
instances are solved using 4GB RAM, 2.53 GHz i5 core CPU, and Windows 7 with 64 bit 
operating system. 
 
For each problem instance solved for each specific network size, the following statistics about 
the greedy heuristic algorithm are documented. 

 The population size (|PGR|): The population size of the greedy heuristic algorithm is the 
total number of inspection schedules constructed using the greedy schedulers. That is, 
it is the sum of the number of inspection schedules generated with time minimizing 
greedy scheduler by starting it with each track as the first track to be inspected and the 
number of inspection schedules generated with weight maximizing greedy scheduler 
by starting it with each track as the first track to be inspected. 



29 
 

 The Pareto-Front size (|PFGR|): The Pareto-Front size of the greedy heuristic algorithm 
is the total number of Pareto efficient schedules among the schedules generated by the 
greedy schedulers. Here, Routine 3 is applied on the set of schedules generated by the 
time minimizing and weight maximizing schedulers to determine the set of Pareto 
efficient solutions output by the greedy heuristic algorithm. 

 The number of iterations (IGR): The number of iterations defines the number of 
populations evaluated, i.e., the number of times Routine 3 is executed. In greedy 
heuristic algorithm, this is equal to 1 for any problem instance. 

 The computational time (CPUGR): The computational time (in seconds) of the greedy 
heuristic algorithm is the total time used to determine the final set of Pareto efficient 
solutions. 

 
For each problem instance solved for each specific network size, the following statistics about 
the genetic algorithm are documented. 

 The average population size (|PGA|): The average population size of the genetic 
algorithm is the average of the population sizes over all iterations of the genetic 
algorithm. Note that the genetic algorithm might have different number of schedules in 
each population. 

 The Pareto-Front size (|PFGA|): The Pareto-Front size of the genetic algorithm is the 
total number of Pareto efficient schedules returned by the genetic algorithm at 
termination. 

 The number of iterations (IGA): The number of iterations defines the number of 
populations evaluated, i.e., the number of times Routine 3 is executed. In genetic 
algorithm, this is equal to the number of populations evaluated until termination.  

 The computational time (CPUGA): The computational time (in seconds) of the genetic 
algorithm is the total time used to determine the final set of Pareto efficient solutions. 

 

4.1.Convergence of the Genetic Algorithm 
 
To analyze the convergence of the genetic algorithm, we first demonstrate how the numbers of 
Pareto efficient inspection schedules in each population change over the iterations. Figure 4 in 
Appendix A illustrates the numbers of Pareto efficient solutions in each population, i.e., the 
size of the parent chromosomes, evaluated by the genetic algorithm for each of the 90 problem 
instances solved. As can be seen in Figure 4, the numbers of Pareto efficient schedules in the 
populations increase over the iterations. That is, the genetic algorithm generates more Pareto 
efficient track inspection schedules as the iteration number increases. 
 
Furthermore, we document the intermediate Pareto-Fronts when the 25%, 50%, 75% and 
100% iterations are completed. Figure 5 in Appendix B illustrates the Pareto-Fronts at 
intermediate iterations of the genetic algorithm for each of the 90 problem instances solved. 
As can be seen in Figure 5, the Pareto efficient solutions within the populations are improving 
over time. This tells that the genetic algorithm finds better track inspection schedules, i.e., 
schedules with lower total times and higher total weights, as more iterations are executed.  
 



30 
 

Finally, we document how the average total weight to total time ratio is changing over 
iterations of the genetic algorithm. In particular, the ratio of total weight to total time of a 
schedule ܻ, ܼ is defined as follows: 
 

,ሺܻܪ ܼሻ ൌ
ܹܶሺܻሻ

ܶܶሺܻ, ܼሻ
. 

 
Note that if a schedule has high ܪሺܻ, ܼሻ ratio, it indicates that this schedule is an efficient 
track inspection schedule as it is capable of inspecting important tracks in less times. The 
,ሺܻܪ ܼሻ can be used as a measure of performance of the inspection schedules. Figure 6 given 
in Appendix C documents how the averages of the ܪሺܻ, ܼሻ ratios of the Pareto efficient 
solutions in each iteration of the genetic algorithm change over iterations. As can be seen in 
Figure 6, the average ܪሺܻ, ܼሻ ratios are increasing over the iterations. This suggests that the 
genetic algorithm determines more efficient inspection schedules over iterations. 
 
Recall that both the genetic algorithm and the greedy heuristic algorithm suggest a set of 
inspection schedules to the decision maker. Then, the decision maker should select one 
schedule from the set of alternatives proposed. The ܪሺܻ, ܼሻ ratio can be used to make a final 
selection decision by the decision maker. Specifically, the decision maker can select a 
schedule with high ܪሺܻ, ܼሻ ratio to guarantee that inspection is executed efficiently 
considering the importance of the tracks within reasonable total inspection time. 
 

4.2.Comparison of Genetic Algorithm and Greedy Heuristic Algorithm 
 
Genetic algorithm and the greedy heuristic algorithm are compared in terms of two aspects: 
quantitative aspects and qualitative aspects.  
 

4.2.1. Quantitative Comparison 
 
In quantitative comparison, the iteration numbers, population sizes, number of Pareto efficient 
solutions returned (i.e., the size of the Pareto-Fronts), and the computational times (in 
seconds) are compared. Specifically, we also document whether the genetic algorithm or the 
greedy heuristic algorithm returns more Pareto efficient solutions.  
 
Tables 2-10 given in the Appendix D summarize the quantitative comparison of the problem 
instances solved with each network size ݊ ൌ ሼ100, 150, 200, 250, 300, 350, 400, 450, 500ሽ.  
 
Table 11 illustrates the quantitative comparison of the genetic algorithm and greedy heuristic 
algorithm on average, i.e., over all 10 problem instances solved within each network size.  
 
 
 
 
 
 
 



31 
 

 
 

Table 11. Average Values for Quantitative Comparison for Each Network Size 

 
 Heuristic ݕ݀݁݁ݎܩ

Algorithm 
Genetic Algorithm   

݊ |PGR|  IGR |PFGR| CPUGR |PGA|  IGA |PFGA| CPUGA 
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

100 200 1 30.2 8.6 3602.8 286 209.1 13,094 0% 100% 
150 300 1 31.2 10.5 2723.8 167.4 164.8 8,109 0% 100% 
200 400 1 31 15.6 2619.3 169.4 155.7 10,649 0% 100% 
250 500 1 32.2 20.2 2713.3 147.8 149.9 13,068 0% 100% 
300 600 1 36.4 28.1 2891.9 173.1 160.2 19,858 0% 100% 
350 700 1 37.3 40.7 2704.5 159.9 141.4 22,966 0% 100% 
400 800 1 41.9 57.2 2477.5 126.7 130.4 19,742 0% 100% 
450 900 1 41 74 2653.8 141 137.2 28,730 0% 100% 
500 1000 1 38.9 91.6 2649.3 147.1 130.1 33,180 0% 100% 
Avg. 600 1 35.6 38.5 2781.8 168 153.2 18,822 0% 100% 

 
The following observations are due to Table 11. 

 For each network size ݊, the genetic algorithm evaluates more inspection schedules on 
average for each population. Specifically, the greedy heuristic algorithm evaluates one 
population and the population size was 2n for any problem instance solved; therefore, 
on average the greedy heuristic algorithm has 600 inspection schedules. On the other 
hand, the genetic algorithm evaluates over 2700 inspection schedules on average per 
population. 

 As noted and can be seen in Table 11, the greedy heuristic algorithm terminates after 
the first iteration. On the other hand, the genetic algorithm terminates after 168 
iterations on average. That is, 168 populations are evaluated on average.  

 As expected and can be seen in Table 11, the genetic algorithm requires more 
computational time until termination. Specifically, while the greedy heuristic algorithm 
takes 38 seconds on average, the genetic algorithm takes over 18,800 seconds on 
average. 

 The genetic algorithm returns more Pareto efficient inspection schedules than the 
greedy heuristic algorithm. In particular, the greedy heuristic algorithm returns 35 
inspection schedules on average while the genetic algorithm returns over 150 
inspection schedules on average. That is, the genetic algorithm is able find more Pareto 
efficient track inspection schedules on average. 

 Finally, Table 11 summarizes the percentage of the problem instances solved such that 
the genetic algorithm finds more Pareto efficient solutions than the greedy heuristic 
algorithm. While having more Pareto efficient solutions on average does not mean that 
the genetic algorithm finds more Pareto efficient solutions for each problem instance 
solved, it can be seen in Table 11 that for 100% of the problem instances, the genetic 
algorithm finds more Pareto efficient solutions than the greedy heuristic algorithm. 
 

Based on the quantitative comparison, it can be concluded that the genetic algorithm finds 
more Pareto efficient solutions in all of the problem instances at an expense of increased 



32 
 

computational time. However, the computational times of the genetic algorithm are still 
reasonable for planning problems. 
 

4.2.2. Qualitative Comparison 
 
In qualitative comparison, the average ܪሺܻ, ܼሻ values are compared along with how the 
Pareto-Front of the genetic algorithm performs compared to the Pareto-Front of the greedy 
heuristic algorithm. That is, in addition to comparing the average ܪሺܻ, ܼሻ values over the 
Pareto efficient solutions returned, the sets of Pareto efficient solutions are compared. Let ீܪ஺ 
and ீܪோ denote the average of the ܪሺܻ, ܼሻ values of the Pareto efficient inspection schedules 
over the Pareto efficient inspection schedules determine by the genetic algorithm and greedy 
heuristic algorithm, respectively. 
 
Let the Pareto-Front of genetic algorithm be denoted by	ܲீܨ஺ and Pareto-Front of greedy 
heuristic algorithm be denoted by	ܲீܨோ. The comparison is made based on the Pareto 
dominance between two final Pareto-Fronts. In other words, the following rule is applied:  

 
Unless	ܲீܨ஺ ≡ ஺ீܨሺܲܨܲ if	ோீܨܲ	 ஺ dominatesீܨܲ ,ோீܨܲ	 ோሻீܨܲ⋃ ≡   .஺ீܨܲ

 
Note that ܲܨሺܲீܨ஺  ோሻ defines the set of Pareto efficient inspection schedules within theீܨܲ⋃
set of inspection schedules returned by the genetic algorithm and the greedy heuristic 
algorithm. If ܲܨሺܲீܨ஺ ோሻீܨܲ⋃ ≡ ஺ீܨܲ ஺ whenீܨܲ ്  ோ, it implies that the inspectionீܨܲ	
schedules returned by the genetic algorithm are Pareto superior compared to the inspection 
schedules returned by the greedy heuristic algorithm; thus, the Pareto-Front of the genetic 
algorithm dominates the Pareto-Front of the greedy heuristic algorithm. Dominance relation 
between two Pareto Front is shown by the sign ≫ in which, if the final Pareto-Front of the 
genetic algorithm dominates the Pareto Front of the greedy heuristic algorithm, we will 
write	PFୋ୅ ≫ PFୋୖ and if the final Pareto-Front of the greedy heuristic algorithm dominates 
the Pareto Front of the genetic algorithm, we will write	PFୋୖ ≫ PFୋ୅. We note that it is 
possible not to have neither 	PFୋ୅ ≫ PFୋୖ nor 	PFୋୖ ≫ PFୋ୅. In such a case, neither 	PFୋ୅ 
nor PFୋୖ dominates the other one, which is shown as ܲீܨோ~ܲீܨ஺.  
 
For notational simplicity, we let ܲܨሺܲீܨ஺ ோሻீܨܲ⋃ ൌ  ,௎. In addition to the above statisticsܨܲ
we also document the percentage of the Pareto efficient inspection schedules in ܲܨ௎ that are 
coming from ܲீܨ஺ and the percentage of Pareto efficient inspection schedules in ܲܨ௎ that are 
coming from ܲீܨோ. Tables 12-20 given in the Appendix E summarize the qualitative 
comparison of the problem instances solved with each network size 
݊ ൌ ሼ100, 150, 200, 250, 300, 350, 400, 450, 500ሽ. Table 21 illustrates the qualitative 
comparison of the genetic algorithm and greedy heuristic algorithm on average, i.e., over all 
10 problem instances solved within each network size.  
 
 
 
 
 



33 
 

Table 21. Average Values for Qualitative Comparison for Each Network Size 

 
The following observations are due to Table 21. 

 For each network size ݊, the Pareto efficient inspection schedules returned by the 
genetic algorithm have higher ܪሺܻ, ܼሻ values than the Pareto efficient inspection 
schedules returned by the greedy heuristic algorithm on average. This suggests that the 
inspection schedules returned by the genetic algorithm are more effective and more 
preferable. This can also be observed in Figure 6 given in Appendix C. 

 In all of the problem instances solved for each network size, the Pareto efficient 
inspection schedules returned by the genetic algorithm had higher average ܪሺܻ, ܼሻ 
values. 

 In 96% of the problem instances solved, the set of Pareto efficient inspection schedules 
returned by the genetic algorithm dominates the set of Pareto efficient inspection 
schedules returned by the greedy heuristic algorithm. In particular, while the set of 
Pareto efficient inspection schedules returned by the greedy heuristic algorithm never 
dominated the set of Pareto efficient inspection schedules returned by the genetic 
algorithm, they were indifferent only in 4% of the problem instances. 

 The union set of Pareto efficient inspection schedules consists of over 99% of the 
Pareto efficient solutions returned by the genetic algorithm on average. This suggests 
that the inspection schedules returned by the genetic algorithm have better total time 
and better total weight performances. The Figure 7 given in Appendix F demonstrates 
the comparison of the Pareto efficient inspection schedules returned by the genetic 
algorithm and the greedy heuristic algorithm. As can be seen in Figure 7, in all of the 
problem instances solved, the genetic algorithm was able to find solutions with lower 
total times and higher total weights for track inspection planning problem. 

 
Based on the qualitative comparison, it can be concluded that the genetic algorithm finds 
better inspection schedulers, i.e., inspection schedules with lower total time and higher total 
weights. Furthermore, the total weight to total time ratio is higher in the inspection schedules 
returned by the genetic algorithm. This suggests that the genetic algorithm is a better method 
for solving the track inspection planning problem.  

ோீܪ ஺ீܪ ோீܪ ݊

൒  ஺ீܪ
ோீܪ

൏ ஺ீܪ
|௎ܨܲ|  % ܴܩ

in 
|௎ܨܲ|

 % ܣܩ
in 

 |௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
ோீܨܲ ~ 
 ஺ீܨܲ

100 0.1065 0.1149 0% 100% 209.1 0% 100% 0% 100% 0% 
150 0.1086 0.1163 0% 100% 164.8 0% 100% 0% 100% 0% 
200 0.1164 0.1207 0% 100% 155.7 0% 100% 0% 100% 0% 
250 0.1184 0.1220 0% 100% 149.9 0% 100% 0% 100% 0% 
300 0.1195 0.1235 0% 100% 160.2 0% 100% 0% 100% 0% 
350 0.1217 0.1244 0% 100% 141.4 0.23% 99.94% 0% 90% 10% 
400 0.1236 0.1246 0% 100% 130.3 0.28% 99.85% 0% 90% 10% 
450 0.1243 0.1254 0% 100% 137.3 0.19% 100% 0% 90% 10% 
500 0.1240 0.1261 0% 100% 130.2 0.54% 99.91% 0% 90% 10% 
Avg. 0.1180 0.1220 0% 100% 153.2 0.14% 99.97% 0% 96% 4% 



34 
 

5. IMPLEMENTATION DETAILS 

 
Inspection of tracks is the defect detection process of the railroads (Office of Railroad Safety, 
2011). According to the Office of Safety Assurance and Compliance (2002), inspections must 
be performed based on a pre-planned schedule. These inspections are categorized into (1) 
visual inspection performed by inspectors, (2) automated track inspection program (ATIP) 
which is effective after 2012. Assuming ATIP is a non-destructive process, the primary 
technologies to do so are ultrasonic and inductive methods. According to the Office of 
Railroad Safety (2011), ultrasonic method is based on sound waves and induction method is 
based on magnetic field. Ultrasonic technology is the most frequently used method, and 
induction is currently used as a complementary system to the ultrasonic method. 
 
This work is mostly applicable to ATIP; therefore, we review the related methods to associate 
risk of failure using the track inspection results. In Appendix G, we provide a user’s guide 
along with the description of the Matlab 2014a function files that include the codes for the 
solution methods discussed for the track inspection planning problem. Figures 8 and 9 given in 
Appendix G illustrate the input and output Excel files for the algorithms. 
 
All tracks must be inspected according to Table 22. However, tangent tracks 600 feet or less 
constructed of concrete crossties, which is a rectangular support for the rails in railroad tracks, 
including but not limited to isolated track segments, experimental or test track segments, 
highway-rail crossings, and wayside detectors, are excluded.  
 

Table 22. Minimum Inspection Requirements per Year Based on Class and Type of Tracks* 

Class of Track 

Freight Trains Operating Over Track 
With An Annual Tonnage of: 

Passenger Trains Operating 
Over Track With An Annual 

Tonnage of: 

Less than 
40 mgt 

40 to 60 
mgt 

Greater 
than 60 mgt 

Less than 20 
mgt 

Greater than 
or equal to 

20 mgt 

5 or above 2 3 4 3 3 

4 2 3 4 2 3 

3 1 2 2 2 2 

2 0 0 0 1 1 

1 0 0 0 0 0 

Excepted track 0 0 0 N/A N/A 
* If a track is subject to both freight and passenger traffic, the higher frequency is applied in 
case of two different frequency values. 

 

We note that the Department of Transportation Records (2014) imply slightly tighter bounds 
on the inspection intervals for track classes 3, 4 and 5. As long as they provide the frequency 



35 
 

and the inspection intervals, one can define the parameters needed to implement the Track 
Inspection Planning Problem stated in this project.  
The class of a track is determined based on several factors. One of the most important factors 
to classify the tracks is the operational speed. Table 23 shows the operational speed for 
different classes of tracks. Table 24 shows the track classification based on the track geometry. 
One can find the classes of tracks by referring to Tables 23 and 24. 
 

Table 23. FRA Track Classes based on Operating Speed  

FRA track class 
Maximum Allowable Operating 
Speed (miles/hour) for Freight 

Train is: 

Maximum Allowable 
Operating Speed 
(miles/hour)  for 

Passenger Train is: 
Excepted Track 10 N/A 

Class 1 10 15 
Class 2 25 30 
Class 3 40 60 
Class 4 60 80 
Class 5 80 90 

 

Table 24. FRA Track Classes based on Track Geometry  

FRA track class 

Minimum Number and Type of Crossties Each 39 feet 
segment of track should have: 

Tangent track and curved 
track less than or equal to 2 

degrees 

Turnouts and curved track 
greater than 2 degrees 

Class 1 5 6 
Class 2 8 9 
Class 3 8 10 

Class 4,5 12 14 
 

The frequency and the inspection intervals given in Table 22 can be translated to the minimum 
number of inspections required for each track ݅ ∈  ௜ values, and the required timeܮ ,that is ,ܫ
between two consecutive inspections for each track ݅ ∈  that is, ߬௜ values, respectively. The ,ܫ
longest frequency noted in Table 22 is one inspection per year, that is, the minimum number 
of inspections required is one and the time between two consecutive inspections is one year 
(or 365 days) for class 4 and 5 tracks with concrete crossties when the inspection period is one 
year. The most frequent inspection is twice per week with one day between consecutive 
inspections for other types of class 4 and 5 tracks. For this situation, the minimum number of 
inspections required is 2 per week or 104 per year and time between two consecutive 
inspections is one day. Using the class of track segments and ATIP requirements, one can 
define	ܮ௜ and ߬௜ values for each track segment to be inspected. 
 



36 
 

Each track segment requires a specific time for inspection denoted by	ݐ ൌ ሼݐ௜ሽ௜ୀଵ
௡ ; vector of 

the track inspection times. This time defines the time it takes for the track inspection vehicle to 
inspect the specific track segment: it might be defined depending on the length of the track and 
the speed of the inspection vehicle on tracks; hence, one can define this parameter easily. 
There is also a travel time between two track segments denoted by	t̂୧୨ for track ݅	and track ݆. 
To be more precise, the inspection vehicle might go from one track segment in a region to 
another track segment, and the time for reaching from one segment to another is the travel 
time between the segments. It might be defined considering the distance between track 
segments and the average travel speed of the inspection vehicle on road. Note that one can 
assume	tො ୧୨ ൌ t̂୨୧; however, this is not required as a condition in the algorithms proposed. 
 
Each track segment has an individual importance for being inspected. One might define the 
importance of inspection of a track segment depending on the likelihood of defects/failure on 
that segment. In this sense, the concept in the reliability analysis discussed in the next section 
may enable finding the importance weight of the tracks by using intensity function or hazard 
function for each track. 
 

6. RISK MEASUREMENT ANALYSIS 

 
In this section, we propose use of different approaches for associating risk with the tracks after 
their inspection. Specifically, our focus is on three approaches: reliability, defect development, 
and crack growth. Based on our discussion, crack growth method is the most suitable for this 
project as it is able to utilize the inspection results, which we consider as the crack size 
detected in the track segments, the time until next inspection, and the accuracy of the 
inspection vehicle. A set of rules are suggested to define risk based on the crack growth 
approach. 
 

6.1.Reliability Approach 
 
Failure can be quantified using the concepts in reliability analysis (Merrick et al., 2005; Shyr 
et al., 1996) or probabilistic assessment (Rocha et al., 2014). In the reliability analysis, one 
deals with the failure using concepts such as “Intensity function”, “Survival Function”, and 
“Hazard Function” (Merrick et al., 2005; Shyr et al., 1996).  
 
The tracks with no defects are survived tracks, modelled by the survival function, while 
defective tracks are perished ones, modelled by the hazard function (Shyr et al., 1996). 
Therefore, hazard rate is an indicator of defect rate of a track which is not detected with a 
defect. By this definition, the hazard rate can be used to determine the priority of tracks to be 
inspected (importance weight of the track inspections).  
 
In one approach to calculate the hazard rate (Shyr et al., 1996), one uses the probability of the 
defect regime being of type	݆, and the conditional hazard rate given a type	݆ defect regime. 
Then hazard rate can be calculated as 

݄௑ሺݔሻ ൌ෍ ݄௑|௝ሺݔሻܲሺ݆|ݔሻ
௃

௝ୀଵ
, 



37 
 

 
where ܲሺ݆|ݔሻ is the probability of rail being in type	݆ defect regime at usage level	ݔ; and 
݄௑|௝ሺݔሻ is the conditional hazard rate given the rail is in type j defect regime. Shyr et al., 

(1996) introduced a method to calculate ܲሺ݆|ݔሻ and	݄௑|௝ሺݔሻ. In order to use this method, one 

needs to know the different type of defects presented in (Office of Railroad Safety, 2011) 
along their hazard functions. 
 
Unlike Shyr et al., (1996) that focused on hazard rate to indicate defect rate of an un-defected 
track, Merrick et al. (2005) investigated the number of defects in a given track. According to 
Merrick et al., (2005), the number of defects occurring in rail tracks is a function of the 
cumulative traffic usage, which follows a non-homogenous Poisson point process (NHPP). 
For this purpose, they introduced a parametric intensity function; NHPP. In this function, the 
number of defects occurring in track (ܰ) is a function of cumulative traffic usage (ݐ), by 
parameters	,ܮ	,ߙ	ߛ which is denoted by: 
 

ሺܰሺݐሻ|ߙ, ,ߛ  ఊିଵሻݐߛߙܮሺܲܲܪܰ	~	ሻܮ

 
where,	ܮ denotes length of segment of network,	ߙ is a covariate that varies from one rail to 
another and is conditionally independent (Merrick et al., 2004). Large number of covariate 
parameters (for each track, there exists a different value of	ߙ) in this function may cause 
difficulty to model the defect rate in the tracks. 
 
Different than reliability analysis, one can use simulation and probability models to analyze 
the failure in tracks. Similar work has been done on failure of railroad bridges, in which, the 
safety of bridges for high speed trains are assessed (Rocha et al., 2014).  Their work can also 
be applied into inspection and maintenance process by defining an appropriate procedure. As 
they have suggested, the first stage is defining the basic random variables, as well as their 
distribution. These variables should include all the parameters which their change affects the 
dynamic behavior of the inspection-Maintenance process. The second stage is to generate the 
values for each variable of simulation. At the third stage, one analyzes the outcome using an 
analytic approach.  
 
Reliability based approaches depend on very detailed probability calculations and they 
generally focus on failure rate calculations of tracks with no observed defects instead of 
associating a risk of failure using the data observed after inspection and the time until next 
inspection. Specifically, as noted by Kashima (2004), the observations after track inspections 
are based on the crack size on the tracks. Therefore, we next focus on approaches that utilize 
defect information gathered after inspections.  
 
 



 

6.2.Defe
 
Failure in a
from a defe
a crack in a 
eventually b
between the
interval is p
time when 
causes failu
prevent the 
 

 
Inspection p
the railroad
cannot alw
advanced te
defect. The
time period
of failure un
for the track

ect Develop

a track segm
ct to a failur
rail segmen

be detectabl
e time of the
presented in 
a crack is d

ure. It is di
breakage, th

Figure

process by d
d network. H
ways detect 

echnologies,
refore, the t
, in which an
ntil the next
k maintenanc

ment Appro

ment generall
re, and from 
nt starts to gr
le (Kashima
e detection o
Figure 10 be
detected, and
scussed that

hey suggeste

e 10. P-F Int

definition is t
However, insp

the defects.
, such as ult
time between
n undetected
t inspection i
ce planning.

3

oach 

ly follows a 
a failure to 

row it may b
a, 2004; Pet
of a crack a
elow, where 
d Tcrit is th
t the P-F in

ed an inspect

terval Illustr

trying to det
pection is no
. More imp
trasonic insp
n consecutiv
d crack migh
is, therefore
 

38 

process from
breakage (K

be undetected
terz, 2004). 
and the time 
Tinit is the 

he time the 
nterval has 
tion procedu

ration (Podof

tect the defe
ot perfect (K
portantly, ev
pection, ther
ve inspection
ht develop in
, needed for

m an undete
Kashima, 200
d at first but
Peterz (200
of failure a
initialization
crack reach
an exponen

ure during th

fillini et al., 

ects in track 
Kashima, 200
ven if the i
re is a chan
ns of the sa

nto a failure 
r appropriate

ected crack i
04; Peterz, 2
, after some 

04) defined 
as a P-F inte
n of a crack,

hes the critic
ntial distribu
he P-F interv

2006) 

to prevent th
04; Peterz, 2
inspection i

nce of not d
ame track ca
(Peterz, 200

e policy imp

into defects,
2004). When

time, it will
the interval

erval. A P-F
, Tdet is the
cal size that
ution and to
al. 

 

he failure in
2004), i.e., it
is based on

detecting the
an set as the
04). The risk
plementation

, 
n 
l 
l 

F 
e 
t 
o 

n 
t 
n 
e 
e 
k 
n 



39 
 

 
6.2.1. Risk Definition 

 
According to Kashima (2004), risk in an interval between consecutive inspections of a 
segment of a track can be calculated by: 
 

݇ݏܴ݅ ൌ ∑ ܵ௥ ൈ ௥ܰ
ோ
௥ୀଵ ,  

 
where	ܵ௥ is the severity of failure type	ݎ and	 ௥ܰ is the total expected number of failures of type 
ݎ in the interval between two consecutive inspections  such that ݎ ൌ 1,… , ܴ represents the 
different types of failure. In (Anderson et al., 2003) one can find the different types of failures 
in tracks that can lead to a breakage. Based on (Zhao et al., 2007), the severity is defined as 
the percentage of failures that leads to breakage such as derailment. Severity is constant for a 
period of time when the track structure and the track operating speed do not change (Zhao et 
al., 2007). Different studies have used different values for severity (Zhao et al., 2007; 
Podofillinia at al., 2005; Anderson at al., 2003]; however, values less than one can be used for 
severity. For more information regarding the total number of accidents and breakage 
(derailments), one may review department of transportation manual on railroad safety (2002). 
Next, we discuss how to calculate the expected number of failures on a track segment between 
two consecutive inspections on that track segment. 
 

6.2.2. Calculating the Expected Number of Failures between Inspections 
 
Based on Zhao et al. (2007a,b), consider the inspection intervals 〈ݐଵ, ,ଶݐ … , ,௝ିଵݐ ,௝ݐ … ,  ௠〉 of aݐ
track segment and failure types	ݎ ൌ 1,… , ܴ for the same segment. We are trying to find the 
risk on the same segment in the inspection interval	ሾݐ௝ିଵ,  ௝ሿ. Based on our discussion on theݐ
development of failure, we can consider two cases: 
 

 In the first case, defects occur in interval	ሾݐ௝ିଵ,  ௝ሿ and lead to a failure in the sameݐ
interval 

 In the second case, defects occurred before the interval	ሾݐ௝ିଵ,  ௝ሿ and leads to a failureݐ
in that interval.  

 
Then, the expected number of failures due to defect type ݎ (ܨܧ௥) in interval	ሾݐ௝ିଵ,  ,௝ሿݐ
considering both cases, can be calculated based on the following formula (Zhao et al., 2007): 
 

,௝ିଵݐ௥൫ܨܧ ௝൯ݐ ൌ ∑ ቄሺ1 െ ሻ௝ି௞ߚ ׬	 ௝ݐ௥൫ܩሺ߬ሻൣߛ െ ߬൯ െ ௝ିଵݐ௥൫ܩ െ ߬൯൧݀߬
௧ೖ
௧ೖషభ

ቅ௝
௞ୀଵ .  

 
In this formula,	ߛሺ߬ሻ is the rate of type ݎ defect occurrence at time	߬. This rate is also called 
the intensity function (Merrick et al., 2005). ߚ is the detection rate. In addition,	ܩሺݔሻ denotes 
the cumulative distribution function of delay time being less than ݔ, i.e., the time until defect 
initialization. It should be noted that 
 



40 
 

න ݐ௥ሺܩሺ߬ሻߛ െ ߬ሻ݀߬
௧

௧ೕషభ

ൌ න ሺ߬ሻܲሼߛ ௥ܻ ൑ ݐ െ ߬ሽ݀߬
௧

௧ೕషభ

, 

 
where ௥ܻ is delay time for type ݎ defect.  
 
Based on the above equations, if all possible failure types are considered, the risk of a track 
between two consecutive inspections can be calculated as follows: 

,௝ିଵݐ൫݇ݏܴ݅ ௝൯ݐ ൌ෍ ܵ௥ ൈ ,௝ିଵݐ௥൫ܨܧ ௝൯ݐ
ோ

௥ୀଵ

ൌ෍ ෍ ܵ௥ ൈ ቊሺ1 െ ሻ௝ି௞ߚ 	න ௝ݐ௥൫ܩሺ߬ሻൣߛ െ ߬൯ െ ௝ିଵݐ௥൫ܩ െ ߬൯൧݀߬
௧ೖ

௧ೖషభ

ቋ .
௝

௞ୀଵ

ோ

௥ୀଵ
		 

 
Note that one needs the detection rate for calculating the risk. Next, we discuss how detection 
rate of inspection can be determined. 
 

6.2.3. Detection Rate 
 
Detection rate of a defect is denoted by	ߚ. This parameter can be calculated based on practical 
observations or using regression formulae. Introduced by (Zhao et al., 2007), the following 
formula can help calculate the detection rate of defects: 
 

ߚ ൌ 1 െ exp ቂെ5
஺ሺ௧ሻି஺భ
஺∗ି஺భ

ቃ,  
Where 
 

 of the rail head area (HA) % 75 :∗ܣ
 ଵ: 5 % of the rail head area (HA)ܣ
 time :ݐ

ሻݐሺܣ ൌ ଵܣ ൅ ∗ܣ ௧

௅ುಷ
, 

 
such that ܣሺݐሻ defines the size of the crack in terms of percentage of the rail head area and ܮ௉ி 
is the mean of the P-F interval.  
 
However, Zhao et al. (2007) used an average detection rate, which is 0.7 for ultrasonic 
inspection. In practice, we have to either use this value or values similar to it suggested by 
(Zarembski et al., 2005), or calculate the average, which should be calculated based on: 
 

௔௩௘ழ௧భ;௧మவߚ ൌ
׬ ௗఉ
೟మ
೟భ

௧మି௧భ
.  

 
Other than the calculation methods, the data on the inspection vehicle (inspection method) can 
also be used to estimate the defect detection probabilities of an inspection method. Figure 11 
illustrates how the detection probability of different inspection methods change depending on 
the crack size. It is not surprising that as the crack size increases, the probability of detection 
increases as well.  



 

Figure 1

 
Furthermore
probability 
exponential
distribution
size as show

1. Detection

e, there are
of detection

l distribution
. Kashima (2

wn in Figure

n Probabilitie

e studies th
n (POD). Fo
n while Zha
2004) utilize
 12. 

4

es for Differe

hat suggest 
or instance, 
ao and Hald
es a lognorm

41 

ent Inspectio

use of spe
Zheng and 

dar (1994) re
mal distributi

 

on Methods 

ecific proba
Ellingwood

ecommend t
ion for POD 

(Zerbski et a

ability distri
d (1998) sug
the use of a
depending o

 

al., 2005) 

ibutions for
ggest use of
a lognormal
on the crack

r 
f 
l 
k 



42 
 

 

Figure 12. Lognormal Detection Probabilities of Cracks (Kashima, 2004) 

 

6.3.Crack Growth Approach 
 
As is discussed previously, track inspection is not capable of detecting all of the cracks on 
track segments. This imperfection should be taken into account while associating a risk value 
for a track segment after each inspection until its next inspection. In doing so, one can relate 
how a crack develops into a failure and the estimated lifetime of a track segment. In the 
following discussion, we develop a risk measurement method after each inspection 
considering the following two cases: 
 

 A crack is detected during the inspection, 
 A crack is not detected during the inspection. 

 
Prior to the analysis of each case, we next discuss the crack growth and track lifetime models 
as preliminary analysis for risk measurement. 
 

6.3.1. Crack Growth and Track Lifetime Models 
 
Crack growth process is usually studied based on Paris’ Law. This law is stated as follows: 
 

ௗ௔

ௗே
ൌ     ,ሻ௠ܭ∆ሺܥ

 
where	ܽ is the size of crack,	ܰ is the number of stress cycles,	ܥ and	݉ are material parameters. 
According to Kashima (2004), the crack growth in tracks follows the Paris’s Law. For steel 
components, ܥ and	݉ are equal to	3 and	10ିଵଵ, respectively (these values will vary depending 



43 
 

on the material Zhao et al., 2007). In addition,	∆ܭ is the stress intensity factor range and can 
be calculated using the following formula: 
 

ܭ∆ ൌ ௠௔௫ܭ െ ௠௜௡ܭ ൌ     ,ܽߨ√ܻܵ
 
In the above equation,	ܻ is the geometric correction factor and	ܵ is the tensile stress range, 
which is around 45 percent of the ultimate tensile stress for a normal quality railroad track and 
the ultimate tensile stress is	32	݇݃/݉݉ଶ. In Peters (2004), we can find different formulae to 
calculate the geometric correction factor	ܻ for small length of cracks. For example, 
 

ܻ ൌ ටsec ቀగ௔
௪
ቁ	, 0 ൏ ܽ ൑ 0.5,    

 
or 
 

ܻ ൌ ට௪

గ௔
tan ቀగ௔

௪
ቁ	, 0 ൏ ܽ ൑ 0.5,     

 
where,	ݓ is the width of plate in millimeters	ሺ݉݉). Using these equations, one then can find a 
more general form of Paris’ Law for the track cracks as follows: 
 

ܰሺܽ଴, ܽ௖ሻ ൌ

ە
ۖ
۔

ۖ
ۓ
׬

ଵ

஼ௌ೘
൭

గ௔

ୡ୭ୱ൬ቀഏೌ
ೢ
ቁ൰
൱

ି೘
మ

݀ܽ
௔೎
௔బ

, 0 ൏ ܽ ൑ 0.5		

׬
ଵ

஼ௌ೘
ሺܽߨሻି

೘
మ ݀ܽ

௔೎
௔బ

,																						ܽ ൐ 0.5

   

 
ܰሺܽ଴, ܽ௖ሻ defines the number of stress cycles for the crack to grow from length	ܽ଴ to	ܽ௖ 
(length of	ܽ in	݉݉). Furthermore, using the train traffic data on the track segment, the number 
of stress cycles can be used to estimate the time for a crack to grow from length 	ܽ଴ to	ܽ௖ 
(where a stress cycle implies a load on the track).  
 
Using the crack growth rate, the lifetime of a track segment after crack initialization can be 
determined. In particular, let us define the following parameters: 
 

 α: the crack growth rate (calculated based on Paris’s law), 
 AC : critical crack size (if a crack reaches size AC, the track segment is assumed 

failed) 
 
Then, the following graph, given in Figure 13, depicts the lifetime of a track segment. 

Therefore, the time to failure after crack initialization will amount to 
஺஼

஑
. For instance, if one 

knows that the total time of a track from the start of its use until failure is ܶܮ, the crack 

initialization time is ܶܮ െ ஺஼

஑
. Furthermore, given the size of a crack of size ܣ, one can 

determine the time until failure as 
஺஼ି஺

஑
. 

 



44 
 

In most materials and systems, the lifetime of a system is generally modeled using a 
probability distribution. Let ܶܮ denote the lifetime of a track. Then, based on the material of 
the track, one can define the probability of failure at time ܶ as ܲݎሺܶܮ ൌ ܶሻ. At this point, one 
needs to determine the probability density function for the lifetime of a track. It is common 
that exponential distributions are used to model system/material lifetimes. If we assume that 
the lifetime of a track segment is exponentially distributed, ܲݎሺܶܮ ൌ ܶሻ decreases 
exponentially as ܶ increases. Figure 14 shows the probability density function for a track’s 
lifetime in case of exponential distribution is used for modeling the lifetime of the track. 
 
Next, we explain how to measure risk using the crack growth, track lifetime, and probability 
of detection for each of the cases described above. 
 

 

Figure 13. Crack Growth over Time 



45 
 

 

Figure 14. Exponentially Distributed Track Lifetime  

 
6.3.2. Risk Measurement when Crack Is Detected 

 
Right after inspection of a track, it is possible that the inspection detected a crack. In 
this case, the crack size is measured. Let us assume that the crack size is A. Depending 
on the crack size, the Track Safety Standards Compliance Manual (FRA, 2002) details 
the actions that should be taken. In Appendix H, these actions are summarized for 
different defect types and their sizes (see Table 25). 
 
We note that it is possible that, depending on the size of crack, the actions noted in the 
Track Safety Standards Compliance Manual (FRA, 2002) might suggest delaying 
maintenance or waiting until next inspection. At this point, given the crack size 
observed, one may determine the time it will take this crack to reach the critical crack 
size AC. As noted above, given crack size A, the time it will take this crack to reach 

the critical size is 
஺஼ି஺

஑
. Furthermore, given an inspection schedule, we know the time 

until the next inspection of the track, which is inspected and detected with a crack. 
Therefore, we can recommend the following actions: 
 
Given a track is inspected and a crack size of A is detected: 

1) Determine the time until the next inspection, denoted by T1 
2) Determine the time until the critical crack size, denoted by T2 where ܶ2 ൌ

஺஼ି஺

஑
 

a. If T1<T2, follow the action given in the Track Safety Standards 
Compliance Manual (FRA, 2002). 

b. If T1>T2, schedule inspection on the track earlier than T2. 



46 
 

6.3.3. Risk Measurement when Crack Is Not Detected 
 
Recall that it is possible for the inspection vehicle to not detect a crack even if there is a crack 
on a track. In this case, one should consider the probability of failure until the next inspection 
on that track. Therefore, we next develop a risk measure considering the probability of failure 
until the next inspection. In doing so, we use the track lifetime probabilities, probabilities of 
not detecting a crack, and the crack growth rates. 
 
In particular, let us define the probability of no detection given that there is a crack size of A. 
As suggested by Kashima (2004), a lognormal distribution can be used to determine the 
probability density function of no detection depending on the crack size (see, e.g., Figure 12). 
Let this probability be defined as Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	|  ሻ. From the Bayesianܣ	݁ݖ݅ݏ	݇ܿܽݎܥ
conditional probability equation, one can note that 
 

Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	| ሻܣ	݁ݖ݅ݏ	݇ܿܽݎܥ ൌ
Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ

Prሺ݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ
. 

 
Here, we need to determine the probability of no-detection in case there is actually a crack of 
size A, i.e., Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ. It follows from the above equation that 
 

Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ
ൌ Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	| ሻܣ	݁ݖ݅ݏ	݇ܿܽݎܥ ൈ Prሺ݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ. 

 
From the probability distribution of no detection given the crack size, one already knows 
Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	|  ሻ. Therefore, to determine the probability of not detecting aܣ	݁ݖ݅ݏ	݇ܿܽݎܥ
crack when there is a crack of size A, Prሺ݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ should be determined. In doing so, let 
us define the following parameters: 
 

 ܶܣ: age of the track when inspected last 
 ݂ሺݐሻ: probability density function of the track’s life time 

 
Now, if there is a crack size of ܣ indeed, the lifetime of the track will be its current age plus 
the time until the current crack develops to a failure. We already know that if the crack size 

is	ܣ, after  
஺஼ି஺

஑
 time units, the track will fail. Therefore, we can say that the track’s lifetime 

will be around ܶܣ ൅ ஺஼ି஺

஑
. From the probability density function of the track’s life time, we 

know that 
 

Pr ൬ܶܣ ൅
ܥܣ െ ܣ

α
െ ݁ ൑ ܨܮ ൑ ܶܣ ൅

ܥܣ െ ܣ
α

൅ ݁൰ ൌ න fሺtሻ
஺்ା஺஼ି஺஑ ା௘

஺்ା஺஼ି஺஑ ି௘
 ,ݐ݀

 
where ݁ is a very small number. This probability also defines the probability of having a crack 
of size ܣ at the current inspection (which is not detected). Therefore, 



47 
 

Prሺ݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ ൌ න fሺtሻ
஺்ା஺஼ି஺஑ ା௘

஺்ା஺஼ି஺஑ ି௘
 .ݐ݀

 
It then follows that 
 

Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ

ൌ Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	| ሻܣ	݁ݖ݅ݏ	݇ܿܽݎܥ ൈ	න fሺtሻ
஺்ା஺஼ି஺஑ ା௘

஺்ା஺஼ି஺஑ ି௘
 .ݐ݀

 
Using Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ, we can determine the probability of remaining 
life being less than the time until the next inspection as follows.  
 
Recall that the time until the next inspection is T1. Furthermore, we know that if there is a 

crack of size ܣ, the remaining life of the track is ܶ2 ൌ ஺஼ି஺

஑
. In this case, one can note that if 

T2>T1 with high probability, i.e., it is highly unlikely that the track will fail before its next 
inspection, no action needed to be taken. On the other hand, if T2<T1 with high probability, 
i.e., it is highly likely that the track will fail before its next inspection, we recommend taking 
action for further inspection. To decide on that we need to determine the probability of T2>T1 

in case of no detection of a crack. One can note that T2>T1 implies that 
஺஼ି஺

஑
൐ ܶ1. This 

further indicates that ܣ ൏ ܥܣ െ αܶ1. Therefore, one can discuss that 
 
Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	ܴ݃݊݅݊݅ܽ݉݁	݂݈݁݅	ݏ݅	ݏݏ݈݁	݄݊ܽݐ	1ܶሻ

ൌ න Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	݀݊ܽ	݇ܿܽݎܥ	݁ݖ݅ܵ	ܣሻ
஺஼ି஑்ଵ

଴
ܣ݀

ൌ න න Prሺܰ݋	݊݋݅ݐܿ݁ݐ݁݀	| ሻfሺtሻܣ	݁ݖ݅ݏ	݇ܿܽݎܥ
஺்ା஺஼ି஺஑ ା௘

஺்ା஺஼ି஺஑ ି௘
ݐ݀

஺஼ି஑்ଵ

଴
 .ܣ݀

 
Therefore, we can recommend the following actions: 
 
 Given a track is inspected and no crack is detected: 

1) Determine the time until the next inspection, denoted by T1 
2) Determine the probability of remaining life of the track being less than T1, 

denoted by Risk 
a. If Risk<E, do not take action 
b. If Risk>E, schedule inspection using the remedial actions given the 

Track Safety Standards Compliance Manual (FRA, 2002). 
 
Here, E defines the threshold risk value to be specified by the decision maker.  
 



48 
 

7. CONCLUSIONS 

This project developed mathematical modeling and optimization approaches to analyze the 
track inspection operations on a railroad network and discussed possible procedures that can 
be used to interpret the inspection results.  
 
In particular, the mathematical programming model formulated, which is referred to as Track 
Inspection Planning Problem (TIPP), determines the best inspection schedule for an 
inspection vehicle. The model accounted for the following practical settings of track 
inspection planning operations:  inspection times of the tracks, inspection frequencies of the 
tracks, times between consecutive inspections on the same track, and the inspection 
importance of the tracks. 
 
Furthermore, as it is crucial to schedule track inspections such that the potential defects are 
captured as much as possible within minimum times to increase safety to the maximum, two 
objectives are simultaneously considered in this model. Specifically, minimization of total 
inspection times and maximization of the total importance of the inspections are 
simultaneously considered.  
 
The resulting model was a bi-objective non-linear integer-programming problem, which is one 
of the most difficult optimization problems. A genetic algorithm is developed to determine the 
track inspection schedules that result in low total inspection times as well as high total 
inspection importance. The genetic algorithm provides a set of alternative track inspection 
schedules for the inspection vehicle. These track inspection schedules are not only effective in 
terms of total inspection times but also total safety importance of the inspections.  
 
In absence of the methods developed in this project, a simple scheduling procedure can be 
used for determining the track inspection schedules. However, this method would not directly 
account for the total time and total importance of the inspections. We modified this method 
considering two approaches: time minimizing and weight maximizing approaches. Using these 
two approaches, a greedy heuristic algorithm was constructed.   
 
Upon comparing the solution method proposed in this project to the simple greedy heuristic 
method on a set of railroad track networks of different sizes, the genetic algorithm method 
proposed proves to find improved inspection schedules regardless of the railroad network size. 
Therefore, the genetic algorithm can be used to determine effective track inspection planning 
schedules for the inspection vehicle. Finally, implementation details, a review of the 
techniques on how to use the inspection results to measure risk of failure, and a method to 
measure risk on the tracks are provided. 
 
 
 



49 
 

8. REFERENCES 

      

Acharya, D., Mishalani, R., Martland, D. C., & Eshelby, E. J. (1991). Repoman: an Overall Computer-Aided 
Decision Support System For Planning Rail Replacements. International Heavy Haul Railway 
Conference (pp. 113-123). Vancouver, Canada : Transportation Research Board. 

Amaya, A., Langevin, A., & Trépanier, M. (2007). The capacitated arc routing problem with refill points. 
Operations Research Letters, 45-53. 

Anderson, R., Dick, C. T., & Barkan, C. P. (2003). Railroad Derailment Factors Affecting Hazardous Materials 
Transportation Risk. Transportation Research Board of the National Academies, 1825, pp. 64–74. 
Washington, D.C. 

Andersson, M. (2002). Strategic Planning of Track Maintenance. Stockholm: Department of Infrastructures, 
Kungl Tekniska Hogskolan. 

Babenko, P. (2006). Visual Inspection of Railroad Tracks. Orlando. 

Birmingham, U. o. (2008). Sustainable Development, Global Change and Ecosystems; Rail Inspection 
Technologies.  

Budai-Balke, G. (2009). Operations Research Models for Scheduling Railway Infrastructure Maintenance. 
Rotterdam: Erasmus University Rotterdam. 

Cerniglia, D., Garcia, G., Kalay, S., & Prior, F. (2006). Application of Laser Induced Ultrasound for Rail 
Inspection. Railway Research Center. 

Dell'Orco, M., Ottomanelli, M., Pace, P., & Pascoschi, G. (2001). Intelligent Decision Support Tools for Optimal 
Planning of Rail Track Maintenance. Euro Working Group Transportation, 218-223. 

Eriksen, A., Gascoyne, J., & Al-Nuaimy, W. (2004). Improved Productivity & Reliability of Ballast Inspection 
using Road-Rail Multi-Channel GPR. Preceedings of Railway Engineering. London, UK: IEEE. 

Esveld, C. (1990). Computer-aided maintenance and renewal of track. Railroad Conference (pp. 165-170). 
Chicago, IL: IEEE. 

Gantrex. (2000). Crane Rail Inspection. Gantrex. 

Gordon, C., Akinci, B., & Garrett, J. H. (2007). Formalism for Construction Inspection Planning: Requirements 
and Process Concept. Journal of Computing in Civil Engineering, 29-38. 

Hall, R. W. (2000). Scheduling and facility design for transit railcar maintenance. Transportation Research Part 
A: Policy and Practice, 67–84. 

Hayashi, T., Miyazaki, Y., Murase, M., & Abe, T. (2007). Guided Wave Inspection for Bottom Edge of Rails. 
AIP Conf. Proc. Portland, Oregon: American Institute of Physics. 

Hesse, D. (2007). Rail Inspection Using Ultrasonic Surface Wave. London. 

Higgins, H. (1998). Scheduling of railway track-maintenance activities and crews. Journal of the Operational 
Society, 1026-1033. 



50 
 

Hugenschmid, J. (1999). Railway track inspection using GPR. Journal of Applied Geophysics, 147-155. 

Kashima, T. (2004). Reliability-Based Optimization of Rail Inspection. Cambridge, Massachusetts: 
Massachusetts Institute of Technology. 

Kenderian, S., Djordjevic, B. B., Cerniglia, D., & Garcia, G. (2006). Dynamic railroad inspection using the laser-
air hybrid ultrasonic technique. Insight - Non-Destructive Testing and Condition Monitoring, 336-341. 

Kim, S., & Frangopol, D. M. (2011). Cost-Based Optimum Scheduling of Inspection and Monitoring for Fatigue-
Sensitive Structures under Uncertainty. Journal of Structural Engineering, 1319-1331. 

Lannez, S., Artigues, C., Damay, J., & Gendreau, M. (2010). A railroad maintenance problem solved with a cut 
and column generation matheuristic. "Triennial Symposium on Transportation Analysis (TRISTAN VII). 

Lee, W., Lee, J., Henderson, C., Taylor, H. F., James, R., Lee, C. E., et al. (1999, March 1). Railroad bridge 
instrumentation with fiber-optic sensors. Applied Optics, 38(7), 1110-1114. 

Merrick, J. R., Soyer, R., & Mazzuchi, T. A. (2005). Are Maintenance Practices for Railroad Tracks Effective? 
Journal of the American Statistical Association, 100(465), 17-25. 

NDT, C. (2013, 10 13). Rail Inspection. Retrieved from NDT Resource Center: http://www.ndt-
ed.org/AboutNDT/SelectedApplications/RailInspection/RailInspection.htm 

NDT, H. (n.d.). A document outlining the emergence of the eddy current NDT inspection method as an important 
part of rail maintenance and safety.  

Office of Railroad Safety, F. R. (2011, August). Track Inspector Rail Defect Reference Manual. United States. 
Retrieved October 20, 2014, from http://www.fra.dot.gov/elib/document/2130/ 

Office of Safety Assurance and Compliance, F. R. (2002, January 1). Track Safety Standards Compliance 
Manual. Retrieved October 24, 2014, from https://www.hsdl.org/?view&did=15770 

Peng, F., & Ouyang, Y. (2012). Track maintenance production team scheduling in railroad networks. 
Transportation Research Part B, 1474–1488. 

Peterson, B. O. (2012). Leveraging Technology to Facilitate Predictive Maintenance Planning. AREMA. Chicago, 
IL: AREMA (American Railway Engineering and Maintenance-of-way Association). 

Peterz, N. (2004). Fracture Mechanics. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic 
Publishers. 

Podofillinia, L., Zioa, E., & Vatn, J. (2005). Risk-informed optimisation of railway tracks inspection and 
maintenance procedures. Reliability Engineering and System Safety, 20-35. 

Prescott, D., & Andrews, J. (2013). Modelling Maintenance in Railway Infrastructure Management. Reliability 
and Maintainability Symposium. Orlando, FL: IEEE. 

Pugno, N., Ciavarella, M., Cornetti, P., & Carpinter, A. (2006). A generalized Paris’ law for fatigue crack growth. 
Journal of the Mechanics and Physics of Solids, 54, 1333-1349. 

Rocha, J. M., Henriques, A. A., & Calçada, R. (2014). Probabilistic safety assessment of a short span high-speed 
railway bridge. Engineering Structures, 71, 99-111. 



51 
 

Shiau, Y.-R., Lin, M.-H., & Chuang, W.-C. (2007, May 23). Concurrent process/inspection planning for a 
customized manufacturing system based on genetic algorithm. The International Journal of Advanced 
Manufacturing Technology, 746-755. 

Shyr, F., & Ben-Akiva, M. (1996). Modeling Rail Fatigue Behavior with Multiple Hazard. Journal of 
Infrastructural Engineering,(2), 73-82. 

Transportation, C. B. (2012). Connecticut Railroad Bridge Management Program.  

Transportation, D. o. (2014, January 24). Track Safety Standards, Improving Rail Integrity; Final Rule. Retrieved 
October 24, 2014, from http://www.fra.dot.gov/eLib/Document/3546 

Transportation, O. D. (2012, 02 26). Track Inspector Rail Defect Reference Manual. Ohio, United States. 

Uzarski, D. R., Brown, D. G., Harris, R. W., & Plotkin, D. E. (1993). Maintenance Management of U.S. Army 
Railroad Networks-the RAILER System: Detailed Track Inspection Manual. Champaign, IL: US Army 
Corps of Engineers; Construction Engineering Research Laboratories. 

Zarembski, M. A., & Palese, J. (2005). Characterization of Broken Rail Risk for Freight and Passenger Railway 
Operations., (pp. 25-28). Chicago, IL. 

Zhao, J., Chan, A. H., & Burrow, M. P. (2007). Probabilistic Model for Predicting Rail Breaks and Controlling 
Risk of Derailment. Transportation Research Record, 1995, 76-83. 

Zhao, J., Chan, A. H., Roberts, C., & Madelin, K. B. (2007). Reliability evaluation and optimization of imperfect 
inspections for a component with multi-defects. Reliability Engineering and System Safety, 92, 65-73. 

Zhao, Z., Haldar, A., & Breen, F. J. (1994). Fatigue‐Reliability Updating through Inspections of Steel Bridges. 
Journal of Structural Engineering, 120(5), 1624–1642. 

Zheng, R., & Ellingwood, B. (1998). Role of non-destructive evaluation in time-dependent reliability analysis. 
Structural Safety, 20(4), 325-339. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



52 
 

9. APPENDIX 

Appendix A: Parent Size of the Iterations of the Genetic Algorithm 
Figure 4: Number of Parent Chromosomes vs. Iterations 

 
  Network Size = 100, Problem Instance = 1    Network Size = 100, Problem Instance = 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 3     Network Size = 100, Problem Instance = 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 5 



53 
 

 
 
  Network Size = 100, Problem Instance = 6    Network Size = 100, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 8     Network Size = 100, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 10 



54 
 

 
  Network Size = 150, Problem Instance = 1    Network Size = 150, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 3     Network Size = 150, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 5 



55 
 

 
 
  Network Size = 150, Problem Instance = 6    Network Size = 150, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 8     Network Size = 150, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 10 



56 
 

 
  Network Size = 200, Problem Instance = 1    Network Size = 200, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 3     Network Size = 200, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 5 



57 
 

 
  Network Size = 200, Problem Instance = 6    Network Size = 200, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 8     Network Size = 200, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 10 



58 
 

 
 
  Network Size = 250, Problem Instance = 1    Network Size = 250, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 3     Network Size = 250, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 5 



59 
 

 
  Network Size = 250, Problem Instance = 6    Network Size = 250, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 8     Network Size = 250, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 10 



60 
 

 
  Network Size = 300, Problem Instance = 1    Network Size = 300, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 3     Network Size = 300, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 5 



61 
 

 
 
  Network Size = 300, Problem Instance = 6    Network Size = 300, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 8     Network Size = 300, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 10 



62 
 

 
  Network Size = 350, Problem Instance = 1    Network Size = 350, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 3     Network Size = 350, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 5 



63 
 

 
  Network Size = 350, Problem Instance = 6    Network Size = 350, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 8     Network Size = 350, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 10 



64 
 

 
  Network Size = 400, Problem Instance = 1    Network Size = 400, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 3     Network Size = 400, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 5 



65 
 

 
  Network Size = 400, Problem Instance = 6    Network Size = 400, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 8     Network Size = 400, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 10 



66 
 

 
  Network Size = 450, Problem Instance = 1    Network Size = 450, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 3     Network Size = 450, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 5 



67 
 

 
  Network Size = 450, Problem Instance = 6    Network Size = 450, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 8     Network Size = 450, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 10 



68 
 

 
  Network Size = 500, Problem Instance = 1    Network Size = 500, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 3     Network Size = 500, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 5 



69 
 

 
  Network Size = 500, Problem Instance = 6    Network Size = 500, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 8     Network Size = 500, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 10 

 
 

 

 

 

 

 

 

 

 



70 
 

Appendix B: Improvements of the Pareto Fronts of the Genetic Algorithm 
Figure 5: Parent Chromosomes over Iterations 

 
    Network Size = 100, Problem Instance = 1     Network Size = 100, Problem Instance = 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 3     Network Size = 100, Problem Instance = 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 5 



71 
 

 
 
    Network Size = 100, Problem Instance = 6     Network Size = 100, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 8     Network Size = 100, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 10 



72 
 

 
    Network Size = 150, Problem Instance = 1     Network Size = 150, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 3     Network Size = 150, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 5 



73 
 

 
    Network Size = 150, Problem Instance = 6     Network Size = 150, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 8     Network Size = 150, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 10 



74 
 

 
    Network Size = 200, Problem Instance = 1     Network Size = 200, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 3     Network Size = 200, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 5 



75 
 

 
    Network Size = 200, Problem Instance = 6     Network Size = 200, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 8     Network Size = 200, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 10 



76 
 

 
    Network Size = 250, Problem Instance = 1     Network Size = 250, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 3     Network Size = 250, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 5 



77 
 

 
    Network Size = 250, Problem Instance = 6     Network Size = 250, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 8     Network Size = 250, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 10 



78 
 

 
    Network Size = 300, Problem Instance = 1     Network Size = 300, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 3     Network Size = 300, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 5 



79 
 

 
    Network Size = 300, Problem Instance = 6     Network Size = 300, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 8     Network Size = 300, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 10 



80 
 

 
    Network Size = 350, Problem Instance = 1     Network Size = 350, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 3     Network Size = 350, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 5 



81 
 

 
    Network Size = 350, Problem Instance = 6     Network Size = 350, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 8     Network Size = 350, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 10 



82 
 

 
    Network Size = 400, Problem Instance = 1     Network Size = 400, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 3     Network Size = 400, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 5 



83 
 

 
    Network Size = 400, Problem Instance = 6     Network Size = 400, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 8     Network Size = 400, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 10 



84 
 

 
    Network Size = 450, Problem Instance = 1     Network Size = 450, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 3     Network Size = 450, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 5 



85 
 

 
    Network Size = 450, Problem Instance = 6     Network Size = 450, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 8     Network Size = 450, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 10 



86 
 

 
    Network Size = 500, Problem Instance = 1     Network Size = 500, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 3     Network Size = 500, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 5 



87 
 

 
    Network Size = 500, Problem Instance = 6     Network Size = 500, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 8     Network Size = 500, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 10 

 
 

 

 

 

 

 

 

 

 



88 
 

Appendix C: Improvement of the Weight to Time Ratio of The Genetic Algorithm 

 

Figure 6: Average TW/TT Ratios vs. Iterations 
 

    Network Size = 100, Problem Instance = 1     Network Size = 100, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 3     Network Size = 100, Problem Instance = 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 5 



89 
 

 
    Network Size = 100, Problem Instance = 6     Network Size = 100, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 8     Network Size = 100, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 100, Problem Instance = 10 



90 
 

 
    Network Size = 150, Problem Instance = 1     Network Size = 150, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 3     Network Size = 150, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 5 



91 
 

 
    Network Size = 150, Problem Instance = 6     Network Size = 150, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 8     Network Size = 150, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 150, Problem Instance = 10 



92 
 

 
    Network Size = 200, Problem Instance = 1     Network Size = 200, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 3     Network Size = 200, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Network Size = 200, Problem Instance = 5 



93 
 

 
    Network Size = 200, Problem Instance = 6     Network Size = 200, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 8     Network Size = 200, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 200, Problem Instance = 10 



94 
 

 
    Network Size = 250, Problem Instance = 1     Network Size = 250, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 3     Network Size = 250, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 5 



95 
 

 
    Network Size = 250, Problem Instance = 6     Network Size = 250, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 8     Network Size = 250, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 250, Problem Instance = 10 



96 
 

 
    Network Size = 300, Problem Instance = 1     Network Size = 300, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 3     Network Size = 300, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 5 



97 
 

 
    Network Size = 300, Problem Instance = 6     Network Size = 300, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 8     Network Size = 300, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 300, Problem Instance = 10 



98 
 

 
    Network Size = 350, Problem Instance = 1     Network Size = 350, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 3     Network Size = 350, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 5 



99 
 

 
    Network Size = 350, Problem Instance = 6     Network Size = 350, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 8     Network Size = 350, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 350, Problem Instance = 10 



100 
 

 
    Network Size = 400, Problem Instance = 1     Network Size = 400, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 3     Network Size = 400, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 5 



101 
 

 
    Network Size = 400, Problem Instance = 6     Network Size = 400, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 8     Network Size = 400, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 400, Problem Instance = 10 



102 
 

 
    Network Size = 450, Problem Instance = 1     Network Size = 450, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 3     Network Size = 450, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 5 



103 
 

 
    Network Size = 450, Problem Instance = 6     Network Size = 450, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 8     Network Size = 450, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 450, Problem Instance = 10 



104 
 

 
    Network Size = 500, Problem Instance = 1     Network Size = 500, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 3     Network Size = 500, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 5 



105 
 

 
    Network Size = 500, Problem Instance = 6     Network Size = 500, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 8     Network Size = 500, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Network Size = 500, Problem Instance = 10 

 
 

 

 

 

 

 

 

 

 



106 
 

Appendix D: Quantitative Comparison of the Genetic and Greedy Algorithms 
Table 2. Quantitative Comparison between Greedy Algorithm and GA; n=100 Tracks 

   ܣܩ ݕ݀݁݁ݎܩ 

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 200 1 30 2.9 3,909 364 210 18,890 0 1 
2 200 1 24 7.2 3,370 260 170 9,940 0 1 
3 200 1 30 7.1 3,285 292 219 11,403 0 1 
4 200 1 35 7.7 3,483 233 213 9,349 0 1 
5 200 1 31 8.4 4,192 360 255 18,890 0 1 
6 200 1 30 6.9 4,389 413 237 24,093 0 1 
7 200 1 32 8.4 3,037 158 161 5,534 0 1 
8 200 1 19 9.5 2,692 182 171 5,530 0 1 
9 200 1 38 19.6 3,931 304 237 15,354 0 1 
10 200 1 33 8.2 3,738 294 218 12,693 0 1 

Average 200 1 30.2 8.6 3,602 286 209.1 13,095 0 1 
 

 

Table 3. Quantitative Comparison between Greedy Algorithm and GA; n=150 Tracks 

   ܣܩ ݕ݀݁݁ݎܩ 

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 300 1 31 5.4 2,588 187 164 7,969 0 1 
2 300 1 27 10.5 3,340 210 209 12,240 0 1 
3 300 1 31 10.3 3,747 282 228 18,442 0 1 
4 300 1 38 9.4 3,244 147 191 8,071 0 1 
5 300 1 40 12.3 3,272 224 200 12,043 0 1 
6 300 1 29 10 2,772 176 173 7,854 0 1 
7 300 1 30 10.7 2,301 137 120 4,981 0 1 
8 300 1 29 13.4 2,172 122 128 4,133 0 1 
9 300 1 30 12.5 1,957 118 108 3,498 0 1 
10 300 1 27 10.6 1,843 71 127 1,870 0 1 

Average 300 1 31.2 10.5 2,724 167 164 8,110 0 1 
 

 

 

 



107 
 

 

Table 4. Quantitative Comparison between Greedy Algorithm and GA; n=200 Tracks 

ܣܩ ݕ݀݁݁ݎܩ    

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 400 1 30 14.8 2,177 92 124 4,338 0 1 
2 400 1 31 14.5 2,986 245 190 16,517 0 1 
3 400 1 38 15.8 3,305 208 181 15,919 0 1 
4 400 1 27 16 2,797 211 151 13,493 0 1 
5 400 1 28 15 3,339 253 209 19,681 0 1 
6 400 1 30 13 2,401 135 151 7,239 0 1 
7 400 1 30 16 1,821 90 98 3,533 0 1 
8 400 1 27 17 2,053 66 119 2,943 0 1 
9 400 1 30 16.6 2,205 187 153 8,825 0 1 
10 400 1 39 16.5 3,108 207 181 14,008 0 1 

Average 400 1 31 15.6 2619.3 169.4 155.7 10,649 0 1 
 

 

Table 5. Quantitative Comparison between Greedy Algorithm and GA; n=250 Tracks 

   ܣܩ ݕ݀݁݁ݎܩ 

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 500 1 41 18.4 3,133 208 186 20,127 0 1 
2 500 1 29 19.7 2,210 91 125 5,862 0 1 
3 500 1 37 20.3 2,492 81 124 5,769 0 1 
4 500 1 28 19.6 2,140 91 112 5,670 0 1 
5 500 1 33 20.4 2,681 152 159 12,132 0 1 
6 500 1 29 19.3 2,870 221 153 19,441 0 1 
7 500 1 31 21 3,642 207 207 24,078 0 1 
8 500 1 36 20.9 2,101 96 115 5,807 0 1 
9 500 1 31 21 3,642 207 207 24,151 0 1 
10 500 1 27 19 2,218 124 111 7,653 0 1 

Average 500 1 32.2 20.2 2713.3 147.8 149.9 13,068 0 1 
 

 



108 
 

 

Table 6. Quantitative Comparison between Greedy Algorithm and GA; n=300 Tracks 

ܣܩ ݕ݀݁݁ݎܩ    

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 600 1 35 25.9 3,269 219 175 27,743 0 1 
2 600 1 30 27.6 3,005 209 167 24,115 0 1 
3 600 1 35 27.4 3,194 193 179 23,154 0 1 
4 600 1 51 26.9 2,838 123 153 13,527 0 1 
5 600 1 36 27.7 3,849 245 212 38,534 0 1 
6 600 1 41 29.3 2,689 144 157 14,389 0 1 
7 600 1 38 30 2,777 190 149 20,144 0 1 
8 600 1 28 28.9 2,426 147 127 13,361 0 1 
9 600 1 38 29.9 2,359 105 146 9,427 0 1 
10 600 1 32 27.2 2,509 156 137 14,195 0 1 

Average 600 1 36.4 28.1 2891.9 173.1 160.2 19,858 0 1 
 

 

Table 7. Quantitative Comparison between Greedy Algorithm and GA; n=350 Tracks 

   ܣܩ ݕ݀݁݁ݎܩ 

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 700 1 37 40 3,324 184 194 50,753 0 1 
2 700 1 35 39 2,643 147 109 18,073 0 1 
3 700 1 37 39.4 2,706 154 137 19,108 0 1 
4 700 1 44 40.9 2,503 159 126 18,800 0 1 
5 700 1 37 38.9 2,967 189 148 27,391 0 1 
6 700 1 34 45.3 2,070 73 110 6,998 0 1 
7 700 1 38 43.9 2,708 131 163 16,733 0 1 
8 700 1 34 40.6 2,767 251 135 32,654 0 1 
9 700 1 43 39.6 3,041 162 170 23,348 0 1 
10 700 1 34 38.9 2,313 149 122 15,812 0 1 

Average 700 1 37.3 40.7 2704.5 159.9 141.4 22,966 0 1 
 

 

 



109 
 

 

Table 8. Quantitative Comparison between Greedy Algorithm and GA; n=400 Tracks 

ܣܩ ݕ݀݁݁ݎܩ    

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 800 1 41 86.6 2,219 96 101 18,539 0 1 
2 800 1 36 53.8 2,413 138 137 18,685 0 1 
3 800 1 44 52 2,369 109 102 14,363 0 1 
4 800 1 49 52.6 3,275 206 175 41,069 0 1 
5 800 1 39 52 2,032 82 107 9,361 0 1 
6 800 1 31 59.6 3,009 195 179 34,922 0 1 
7 800 1 39 53.9 2,246 132 121 16,919 0 1 
8 800 1 48 54.2 2,644 142 133 21,878 0 1 
9 800 1 45 54 2,264 85 116 11,001 0 1 
10 800 1 47 53.2 2,304 82 133 10,689 0 1 

Average 800 1 41.9 57.2 2477.5 126.7 130.4 19,742 0 1 
 

 

Table 9. Quantitative Comparison between Greedy Algorithm and GA; n=450 Tracks 

   ܣܩ ݕ݀݁݁ݎܩ 

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 900 1 39 113.2 2,575 119 128 33,491 0 1 
2 900 1 52 67.2 2,147 100 100 14,417 0 1 
3 900 1 32 67.3 2,166 73 115 10,767 0 1 
4 900 1 51 71.5 3,726 263 188 71,134 0 1 
5 900 1 43 69.3 2,726 85 147 15,971 0 1 
6 900 1 48 70.5 2,617 172 142 30,709 0 1 
7 900 1 36 69.4 2,709 132 145 24,571 0 1 
8 900 1 33 74.4 2,638 146 152 26,954 0 1 
9 900 1 43 68.5 2,979 210 151 42,685 0 1 
10 900 1 33 68.7 2,253 110 104 16,602 0 1 

Average 900 1 41 74 2653.8 141 137.2 28,730 0 1 
 

 

 

 



110 
 

Table 10. Quantitative Comparison between Greedy Algorithm and GA; n=500 Tracks 

ܣܩ ݕ݀݁݁ݎܩ    

Instances |ܲ݌݋ܲ| ܷܲܥ |ܨܲ| |ݎ݁ݐܫ| |݌݋௔௩௘| |ݎ݁ݐܫ|  ܷܲܥ |ܨܲ|
|ோீܨܲ|
൒  |஺ீܨܲ|

|ோீܨܲ|
൏ |஺ீܨܲ|

1 1000 1 41 92.3 2,878 187 143 43,576 0 1 
2 1000 1 48 89.9 3,053 164 161 40,740 0 1 
3 1000 1 32 87.7 2,664 189 124 40,264 0 1 
4 1000 1 50 91.9 2,437 72 109 14,489 0 1 
5 1000 1 31 90 2,285 97 123 18,163 0 1 
6 1000 1 37 91 2,283 138 115 25,692 0 1 
7 1000 1 37 91.4 2,325 95 117 17,879 0 1 
8 1000 1 44 95.7 3,368 263 174 74,069 0 1 
9 1000 1 33 94.7 2,365 106 102 20,261 0 1 
10 1000 1 36 90.8 2,832 160 133 36,669 0 1 

Average 1000 1 38.9 91.6 2649.3 147.1 130.1 33,180 0 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

Appendix E: Qualitative Comparison of the Genetic and Greedy Algorithms 
Table 12. Qualitative Comparison between Greedy Algorithm and GA; n=100 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.0973 0.1112 0 1 210 0 1 0 1 0 
2 0.1002 0.1041 0 1 170 0 1 0 1 0 
3 0.1187 0.1301 0 1 219 0 1 0 1 0 
4 0.1233 0.1270 0 1 213 0 1 0 1 0 
5 0.1009 0.1128 0 1 255 0 1 0 1 0 
6 0.0967 0.1092 0 1 237 0 1 0 1 0 
7 0.1047 0.1107 0 1 161 0 1 0 1 0 
8 0.1072 0.1111 0 1 171 0 1 0 1 0 
9 0.0992 0.1116 0 1 237 0 1 0 1 0 
10 0.1168 0.1212 0 1 218 0 1 0 1 0 
Average 0.1065 0.1149 0 1 209 0 1 0 1 0 

 

 

Table 13. Qualitative Comparison between Greedy Algorithm and GA; n=150 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1023 0.1172 0 1 164 0 1 0 1 0 
2 0.1009 0.1049 0 1 209 0 1 0 1 0 
3 0.1123 0.1263 0 1 228 0 1 0 1 0 
4 0.1151 0.1239 0 1 191 0 1 0 1 0 
5 0.1044 0.1139 0 1 200 0 1 0 1 0 
6 0.1045 0.1155 0 1 173 0 1 0 1 0 
7 0.1049 0.1143 0 1 120 0 1 0 1 0 
8 0.1112 0.1135 0 1 128 0 1 0 1 0 
9 0.1120 0.1141 0 1 108 0 1 0 1 0 
10 0.1180 0.1196 0 1 127 0 1 0 1 0 
Average 0.1086 0.1163 0 1 164 0 1 0 1 0 

 

 

 

 



112 
 

Table 14. Qualitative Comparison between Greedy Algorithm and GA; n=200 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1178 0.1197 0 1 124 0 1 0 1 0 
2 0.1125 0.1144 0 1 190 0 1 0 1 0 
3 0.1186 0.1328 0 1 181 0 1 0 1 0 
4 0.1233 0.1255 0 1 151 0 1 0 1 0 
5 0.1116 0.1207 0 1 209 0 1 0 1 0 
6 0.1148 0.1202 0 1 151 0 1 0 1 0 
7 0.1162 0.1176 0 1 98 0 1 0 1 0 
8 0.1144 0.1156 0 1 119 0 1 0 1 0 
9 0.1162 0.1176 0 1 153 0 1 0 1 0 
10 0.1191 0.1230 0 1 181 0 1 0 1 0 
Average 0.1164 0.1207 0 1 155 0 1 0 1 0 

 

 

Table 15. Qualitative Comparison between Greedy Algorithm and GA; n=250 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1104 0.1181 0 1 186 0 1 0 1 0 
2 0.1134 0.1142 0 1 125 0 1 0 1 0 
3 0.1165 0.1290 0 1 124 0 1 0 1 0 
4 0.1276 0.1285 0 1 112 0 1 0 1 0 
5 0.1191 0.1206 0 1 159 0 1 0 1 0 
6 0.1187 0.1247 0 1 153 0 1 0 1 0 
7 0.1166 0.1183 0 1 207 0 1 0 1 0 
8 0.1206 0.1217 0 1 115 0 1 0 1 0 
9 0.1166 0.1183 0 1 207 0 1 0 1 0 
10 0.1248 0.1264 0 1 111 0 1 0 1 0 
Average 0.1184 0.1220 0 1 149 0 1 0 1 0 

 

 

 

 



113 
 

Table 16. Qualitative Comparison between Greedy Algorithm and GA; n=300 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1141 0.1246 0 1 175 0 1 0 1 0 
2 0.1131 0.1146 0 1 167 0 1 0 1 0 
3 0.1151 0.1281 0 1 179 0 1 0 1 0 
4 0.1280 0.1293 0 1 153 0 1 0 1 0 
5 0.1150 0.1235 0 1 212 0 1 0 1 0 
6 0.1254 0.1266 0 1 157 0 1 0 1 0 
7 0.1199 0.1209 0 1 149 0 1 0 1 0 
8 0.1208 0.1217 0 1 127 0 1 0 1 0 
9 0.1199 0.1207 0 1 146 0 1 0 1 0 
10 0.1237 0.1252 0 1 137 0 1 0 1 0 
Average 0.1195 0.1235 0 1 160 0 1 0 1 0 

 

 

Table 17. Qualitative Comparison between Greedy Algorithm and GA; n=350 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1176 0.1248 0 1 194 0 1 0 1 0 
2 0.1162 0.1171 0 1 109 0 1 0 1 0 
3 0.1271 0.1281 0 1 137 0 1 0 1 0 
4 0.1290 0.1301 0 1 126 0 1 0 1 0 
5 0.1123 0.1240 0 1 148 0 1 0 1 0 
6 0.1252 0.1261 0 1 110 0 1 0 1 0 
7 0.1227 0.1237 0 1 163 0 1 0 1 0 
8 0.1225 0.1237 0 1 135 0 1 0 1 0 
9 0.1226 0.1235 0 1 170 0.02 99.41 0 0 1 
10 0.1216 0.1227 0 1 122 0 1 0 1 0 
Average 0.1217 0.1244 0 1 141.4 0 1 0 1 0 

 

 

 

 



114 
 

Table 18. Qualitative Comparison between Greedy Algorithm and GA; n=400 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1225 0.1234 0 1 101 0 1 0 1 0 
2 0.1181 0.1187 0 1 136 0.028 98.54 0 0 1 
3 0.1260 0.1267 0 1 102 0 1 0 1 0 
4 0.1304 0.1314 0 1 175 0 1 0 1 0 
5 0.1217 0.1226 0 1 107 0 1 0 1 0 
6 0.1217 0.1276 0 1 179 0 1 0 1 0 
7 0.1234 0.1247 0 1 121 0 1 0 1 0 
8 0.1229 0.1238 0 1 133 0 1 0 1 0 
9 0.1235 0.1245 0 1 116 0 1 0 1 0 
10 0.1216 0.1227 0 1 133 0 1 0 1 0 
Average 0.1232 0.1246 0 1 130.3 0 1 0 1 0 

 

 

Table 19. Qualitative Comparison between Greedy Algorithm and GA; n=450 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1243 0.1254 0 1 128 0 1 0 1 0 
2 0.1209 0.1216 0 1 101 0.019 1 0 0 1 
3 0.1234 0.1272 0 1 115 0 1 0 1 0 
4 0.1306 0.1315 0 1 188 0 1 0 1 0 
5 0.1220 0.1228 0 1 147 0 1 0 1 0 
6 0.1277 0.1284 0 1 142 0 1 0 1 0 
7 0.1237 0.1247 0 1 145 0 1 0 1 0 
8 0.1226 0.1233 0 1 152 0 1 0 1 0 
9 0.1237 0.1249 0 1 151 0 1 0 1 0 
10 0.1239 0.1247 0 1 104 0 1 0 1 0 
Average 0.1243 0.1254 0 1 137.3 0 1 0 1 0 

 

 

 

 



115 
 

Table 20. Qualitative Comparison between Greedy Algorithm and GA; n=500 Tracks 

Instances ܹܶ
ܶܶ

ீோ

 
ܹܶ
ܶܶ

ீ஺

 
ܹܶ
ܶܶ

ீோ

൒
ܹܶ
ܶܶ

ீ஺

 

ܹܶ
ܶܶ

ீோ

൏
ܹܶ
ܶܶ

ீ஺

|௎ܨܲ|  % ܴܩ
in 
|௎ܨܲ|

 % ܣܩ
in 
|௎ܨܲ|

ோீܨܲ

≫  ஺ீܨܲ
ோீܨܲ

≪  ஺ீܨܲ
஺ீܨܲ~ோீܨܲ

1 0.1246 0.1255 0 1 143 0 1 0 1 0 
2 0.1217 0.1225 0 1 161 0 1 0 1 0 
3 0.1274 0.1281 0 1 124 0 1 0 1 0 
4 0.1312 0.1317 0 1 109 0 1 0 1 0 
5 0.1173 0.1240 0 1 123 0 1 0 1 0 
6 0.1197 0.1284 0 1 115 0 1 0 1 0 
7 0.1254 0.1260 0 1 118 0.054 99.15 0 0 1 
8 0.1230 0.1240 0 1 174 0 1 0 1 0 
9 0.1254 0.1262 0 1 102 0 1 0 1 0 
10 0.1235 0.1242 0 1 133 0 1 0 1 0 
Average 0.1239 0.1261 0 1 130 0 1 0 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

 
Appendix F: Comparison of the Pareto Fronts of the Genetic and Greedy Algorithms 

 

Figure 7: Pareto Fronts of the Genetic and Greedy Algorithms 
 

 Network Size = 100, Problem Instance = 1  Network Size = 100, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 100, Problem Instance = 3  Network Size = 100, Problem Instance = 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 100, Problem Instance = 5 



117 
 

 
 Network Size = 100, Problem Instance = 6  Network Size = 100, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 100, Problem Instance = 8  Network Size = 100, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 100, Problem Instance = 10 



118 
 

 
 Network Size = 150, Problem Instance = 1  Network Size = 150, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 150, Problem Instance = 3  Network Size = 150, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 150, Problem Instance = 5 



119 
 

 
 Network Size = 150, Problem Instance = 6  Network Size = 150, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 150, Problem Instance = 8  Network Size = 150, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 150, Problem Instance = 10 



120 
 

 
 
 Network Size = 200, Problem Instance = 1  Network Size = 200, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 200, Problem Instance = 3  Network Size = 200, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 200, Problem Instance = 5 



121 
 

 
 Network Size = 200, Problem Instance = 6  Network Size = 200, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 200, Problem Instance = 8  Network Size = 200, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 200, Problem Instance = 10 



122 
 

 
 Network Size = 250, Problem Instance = 1  Network Size = 250, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 250, Problem Instance = 3  Network Size = 250, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 250, Problem Instance = 5 



123 
 

 
 Network Size = 250, Problem Instance = 6  Network Size = 250, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 250, Problem Instance = 8  Network Size = 250, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 250, Problem Instance = 10 



124 
 

 
 Network Size = 300, Problem Instance = 1  Network Size = 300, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 300, Problem Instance = 3  Network Size = 300, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 300, Problem Instance = 5 



125 
 

 
 Network Size = 300, Problem Instance = 6  Network Size = 300, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 300, Problem Instance = 8  Network Size = 300, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 300, Problem Instance = 10 



126 
 

 
 Network Size = 350, Problem Instance = 1  Network Size = 350, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 350, Problem Instance = 3  Network Size = 350, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 350, Problem Instance = 5 



127 
 

 
 Network Size = 350, Problem Instance = 6  Network Size = 350, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 350, Problem Instance = 8  Network Size = 350, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 350, Problem Instance = 10 



128 
 

 
 
 Network Size = 400, Problem Instance = 1  Network Size = 400, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 400, Problem Instance = 3  Network Size = 400, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 400, Problem Instance = 5 



129 
 

 
 Network Size = 400, Problem Instance = 6  Network Size = 400, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 400, Problem Instance = 8  Network Size = 400, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 400, Problem Instance = 10 



130 
 

 
 Network Size = 450, Problem Instance = 1  Network Size = 450, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 450, Problem Instance = 3  Network Size = 450, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 450, Problem Instance = 5 



131 
 

 
 Network Size = 450, Problem Instance = 6  Network Size = 450, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 450, Problem Instance = 8  Network Size = 450, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 450, Problem Instance = 10 



132 
 

 
 Network Size = 500, Problem Instance = 1  Network Size = 500, Problem Instance = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 500, Problem Instance = 3  Network Size = 500, Problem Instance = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 500, Problem Instance = 5 



133 
 
 

 
 Network Size = 500, Problem Instance = 6  Network Size = 500, Problem Instance = 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 500, Problem Instance = 8  Network Size = 500, Problem Instance = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Network Size = 500, Problem Instance = 10 

 
 

 

 
 

 
 

 
 
 
 
 
 
 



134 
 
 

Appendix G: User’s Guide for Track Inspection Planning Algorithms 
In this manual, the details of the codes and how they can be used are explained for the genetic 
algorithm (GA) and the greedy heuristic algorithm (Greedy). Input-output for each algorithm is 
explained along with what each Matlab 2014a function does in execution of the algorithms. 

G.1. Input-Output for the Algorithms 
G.1.1. Input Parameters for the Algorithms 

For both of the algorithms, the list of the input parameters is given in Table 25. 

Table 25. List of Input Parameters for Genetic and Greedy Heuristic Algorithms 

Name Notation Description 
ଵൈ௡ A row vector of sizeݐ ݐ ݊ that contains inspection time of each track 
݊ ௡ൈ௡ A matrix of sizeݐ̂ ݐݐ ൈ ݊ that contains traveling time between tracks 

 ଵൈ௡߬ ݑܽݐ
A row vector of size ݊ that shows minimum time between 
consecutive inspection of the same track 

ܶ ܶ A scalar variable that represent time horizon 

ܹ ଵܹൈ௡ 
A row vector of size ݊ that contains a weight of each track (To 
improve safety) 

 ଵൈ௡ܮ ܮ
A row vector of size ݊ that shows minimum required inspection for 
each track 

 

Each of these parameters must be saved on the same directory as the directory of Matlab 2014a 
function files. All of them must be Excel files without any header or any symbol or alphabet. In 
addition, all vectors must be row-vectors in the Excel files. Please note that if any vector 
becomes a column vector or their sizes do not match, then there will be error in command 
window of Matlab 2014a. For example, Figure 8 shows screen shots of Excel files for ݐ and ݐݐ. 

 

 

 

 

 

 

 

 

 

 



135 
 
 

Figure 8: Excel Screenshots for Excel Input Files 

 

 

 

 

, I - MiuMOfl hc ol 

In"rt P'g ' Llyout Formu~., Co" Rm ... Vi ... 

rI • (~ I ibr i 

"' -P.,I . 

" 
B I • 

-. [;] ~ G. n.,,1 
n - A" ,- .. • 'II !il- $ - ." 

&, .6" 
'l:1I' i:1I' "'- ~;g .. ~ 

IQ (onditio".1 Form,lting' Ei- In " rt • E - H &',\ IW form,l., T, bl. · >I'" 0 . 1. 1 • • iii -
~ (,II StyI,,· til form.l· 

>ort& Find & 
Q- fi~,,· 1,I.d· 

Fonl Numb" (.11, 

It - Mi<: r"",fl h< <! 

In"rt P~g. Llyout Formu~", Co" Rm.w Vi ... Add_In' Tu m -- [;] ~ G. n",1 - n - A" ,- .. • 'II !il- $ - ", 
B I • - L. &' .6, ' 

~'" t il' "'- ~.:l .. , 

~ (ond~io".1 For"",ltinQ' Ei- In"rt • E -H &',\ IW for"",l., T, bl. · >I'l' 0 . 1. 1 • • iii -
~ (,II Styl" • til for ... l· 

>ort& find& a- fin ,,· s. l.d· 

, 

4.D86849 , 4.74995 2.249683 3.656489 3.'lO4563 4.114709 4.527631 3.4&4996 2.661&52 4.725628 3.710091 4.763259 

3.227311 4.74995 , 5.573349 3.5.55959 4.461821 4.003242 3.981369 3.181178 5.942208 2.743686 3.36n68 1.991653 

5.347478 2.249683 5.573349 , 4.18904 2.822617 3.611107 3.9627'97 4.7687'98 1.754052 2.221541 3.47'9762 3.30285 

1.634588 $.~ 3.5.55959 4.18904 , 5.039681 5.400061 2.938177 4.815111 3.485778 3.444186 1.165086 ,.= 
4.669303 3.'lO4563 4.461821 2.822617 5.039681 , 5.075186 3.676432 4.677523 2.720&44 2.200636 3.61867'9 2.980556 

3.356211 4.114709 4.003242 3.611107 5.400061 5.075186 , 4.265639 4.080368 2.676395 3.844_ 4.013027 3.877456 

2.652982 4.527631 3.981369 3.9627'97 2.938177 3.676432 4.265639 , ,.~ 4.736339 5.924542 3.955815 4.358833 

2.594146 3.4&4996 3.181178 4.7687'98 4.815111 4.677523 4.080368 ,.~ , 5.855587 2.388183 4.302806 2.082866 

,.~ 2.661&52 5.942208 1.754052 3.485778 2.720&44 2.676395 4.736339 5.855587 , 3.452329 3.999547 4.426343 , 
4.28775 4.725628 2.743686 2.221541 3.444186 2.200636 3.844_ 5.924542 2.388183 3.452329 , 2.94254 4.475703 , 

2.181752 3.710091 3.36n68 3.47'9762 1.165086 3.61867'9 4.013027 3.955815 4.302806 3.999547 2.94254 , 3.492269 



 
 

G.1.2. O

The outc
“outcome
Outcome
details. E
weight o
complete
Figure 9 
 

 

G.2. Gen
The gene
“outcome
file, nam
following
 

1. W

utput Param

come of bo
e_GR” for 
e file include
Each row con
of the inspe
ed in the thir
demonstrate

netic Algori
etic algorithm
e_GA” as th

med Inspect
g questions w

What is the n

meters of th

oth of the a
the genetic

es a matrix, i
ntains: the to
ection sched
rd column, a
es an output 

Figure 9: 

thm Descrip
m uses the p

he output exc
ion_Planner
will be asked

umber of tra

he Algorithm

algorithms w
c algorithm 
in which, ea
otal time of 
dule in the 
and the sequ
file’s details

Excel Scree

ption and U
parameters l
cel file. In or
r_GA.m sho
d inside the M

acks?  

136 

ms 

will be an 
and the gr

ach row corre
the inspecti
second col

uence of trac
s. 

nshot for an

User Guideli
listed in Tab
rder to use th
ould be ope
Matlab Com

Excel file, 
reedy heuris
esponds to a
on schedule
lumn, the t
cks inspecte

n Excel Outp

ines 
ble 21 as th
his algorithm
ened and ex

mmand Wind

named “ou
stic algorith

an inspection
e in the first 
total numbe
ed in the rem

put file 

he input exce
m, the Matla
xecuted. Af
dow: 

utcome_GA”
hm, respecti
n schedule an
column, the

er of inspec
maining colu

el files and 
ab 2014a fun
fter running

” and 
ively. 
nd its 

e total 
ctions 
umns. 

 

gives 
nction 
g, the 



137 
 
 

2. What is the Time Horizon that you want to schedule within? 
3. What is the number of non-improved parents to stop the algorithm? 

 
For the first question, the user needs to put the number of tracks to be inspected.  The number of 
tracks must be equal to the size of the row vector parameters given in Table 21. For question 
two, the length of the inspection period should be given. Please consider that unit of metric used 
for the length of the inspection period, ܶ, must be equal to unit of metric used for travelling time 
 ,For example .(ݑܽݐ) and the time between two consecutive inspections ,(ݐ) inspection time ,(ݐݐ)
if inspection time is given in hours, for instance 2.7 hours to inspect track 1, then, the length of 
the inspection period should also be given in terms of hours. For the third question, it is 
recommended to put “2”. Although having a bigger number may help to find more Pareto 
efficient inspection schedules, it takes considerably more time for the algorithm to terminate.  
The main file can be seen in the following Matlab code: 
 
%% ======================= Inspection Planner GA ========================= 
clc;clear; 
%% ========================== Step 1: Input Data ========================= 
[n,t,tt,L,tau,W,T,I,pop_numbers,matrix_length,number_mutation,... 
    pareto_front_data,mean_weight_time,non_improve,parent_number]=create_inputs(); 
%% ========================== Step 2: GA Code========================== 
output=GA_TISP(n,t,tt,L,tau,W,T,I,pop_numbers,matrix_length,number_mutation,... 
    pareto_front_data,mean_weight_time,non_improve,parent_number); 
%% =================== Step 3: saving final Solution ===================== 
xlswrite('output_GA.xlsx', output); 
%% ====================== Step 4: Drawing figures ======================== 
scatter(output(:,1),output(:,2),30,'c','MarkerEdgeColor','b','MarkerFaceColor','b'); 
xlabel('Objective 1: Total Time (TT)','FontSize',10); 
ylabel('Objective 2: Total Weight (TW)','FontSize',10); 
title('Pareto Front','FontSize',10,'FontWeight','bold'); 
%% 
=====================================================================
 

Inside the main file for GA algorithm stated above (Inspection_Planner_GA.m), two functions 
are included: (1) “create_inputs” function, and (2) “GA_TISP” function. In the next two 
subsections, each one of them is discussed. In addition, in this main file, the outcome is saved as 
“outcome_GA”, an Excel file, and the figure of Pareto Front is drawn.  

G.2.1. “create_inputs” function 

This function reads parameters, which are introduced in Table 21, from the same directory of GA 
codes. First, it is asking about the number of tracks (݊), the length of the inspection period ሺܶሻ 
and the number of non-improved parents to stop (these questions were discussed above). The 
following shows the code for this function.  
 

 



138 
 
 

 

 

function [n,t,tt,L,tau,W,T,I,pop_numbers,matrix_length,number_mutation,... 
    pareto_front_data,mean_weight_time,non_improve,parent_number]=create_inputs() 
fprintf('\n ---> '); 
prompt1='What is the number of tracks?'; 
n=input(prompt1); % Getting number of tracks 
pop_numbers=n; 
 
%% Importing parameters t,tt,tau,L,W 
% t: a Vector that shows Inspection Time 
% tt: A matrix that shows Traveling Time between tracks 
% tau: a Vector that shows time for consecutive inspection of tracks 
% L: a Vector that shows Minimum required inspection for each track 
% W: Importance of Tracks 
a=xlsread('t.xlsx'); 
b=xlsread('tt.xlsx'); 
c=xlsread('tau.xlsx'); 
d=xlsread('L.xlsx'); 
e=xlsread('W.xlsx'); 
t=a(1:n); 
tt=b(1:n,1:n); 
tau=c(1:n); 
L=d(1:n); 
W=e(1:n); 
 
fprintf('\n ---> '); % a function of number of tacks 
prompt1='What is Time Horizon That you want to schedule within?'; 
T=input(prompt1); 
I=(1:n); % set of tracks 
 
matrix_length=ceil(max(t)*sum(L)); 
% we are using that to create a matrix to store chromosome the matrix has a 
% lot of zeros and just a part of each row will be filled by non-zero elements 
number_mutation=10; % Getting number of mutations 
% number of mutations can be a function of sum(L), i.e. number_mutation=0.005*sum(L) 
pareto_front_data=zeros(10*pop_numbers,2,1); 
% A matrix to save the objective value of non-dominated solution in each 
% iteration 
mean_weight_time(1,1)=0; 
% come up with another way to represent the improvement through iterations 
parent_number(1,1)=0; 
fprintf('\n What is the number of non-improved parents to stop the algorithm? ...'); 
prompt2='\n (Please note that 2 would be sufficient!)'; 
non_improve=input(prompt2); % Getting number of non-improved parents to stop the 



139 
 
 

algorithm 
end 

 

G.2.2. “GA_TISP” function 

Using the outcome of “create_inputs” function, this function is performing genetic algorithm 
operations to find a set of Pareto efficient inspection schedules for the track inspection problem. 
The code for “GA_TISP” is as follows: 
 
% ==============================TIPP GA ============================== 
function output=GA_TISP(n,t,tt,L,tau,W,T,I,pop_numbers,matrix_length,number_mutation,... 
pareto_front_data,mean_weight_time,non_improve,parent_number) 
%% ====================== 1. Initial Population ========================= 
fprintf('\n ======================================'); 
fprintf('\n Generating Initial Solutions:'); 
[pop,pop_length,inspections_matrix,spent_time_matrix]=... 
initiate_population(n,t,tt,L,tau,I,matrix_length,pop_numbers); 
fprintf('\n Initial Solutions is generated'); 
fprintf('\n ======================================'); 
PARENT=[]; 
%% ========================== 2. Iteration Loop ========================= 
iter=0; 
non_improved_parents=1; 
while non_improved_parents<non_improve 
iter=iter+1; 
% ================ Pareto-Front and Parent Selection ================ 
[parent,parent_inspections_matrix,pareto_front_data,... 
parent_length,parent_spent_time_matrix,mean_weight_time,parent_number]=... 
pareto_front_selection(n,pop,pop_length,inspections_matrix,W,... 
spent_time_matrix,pareto_front_data,iter,mean_weight_time,parent_number); 
 
if isequal(parent,PARENT) 
 
non_improved_parents=non_improved_parents+1; 
fprintf('\n ======================================'); 
fprintf('\n \t Same Non-Dominated Chromosomes is generated'); 
fprintf('\n \t \t Non-Dominated Chromosomes are being mutated'); 
% ===================== Mutating Population ===================== 
[pop,pop_length,inspections_matrix,spent_time_matrix]=... 
mutation(n,t,tt,tau,L,W,T,I,parent,parent_length,parent_inspections_matrix,... 
parent_spent_time_matrix,matrix_length,pop_numbers,number_mutation); 
% =============================================================== 
fprintf('\n \t \t New population is generated'); 
fprintf('\n ======================================'); 
else 



140 
 
 

non_improved_parents=1; 
PARENT=parent; 
        fprintf('\n ======================================'); 
        fprintf('\n \t New Non-Dominated Chromosomes is generated'); 
        fprintf('\n \t \t Non-Dominated Chromosomes are being mutated'); 
        % ==================== Mutating Population ====================== 
        [pop,pop_length,inspections_matrix,spent_time_matrix]=...         
mutation(n,t,tt,tau,L,W,T,I,parent,parent_length,parent_inspections_matrix,... 
            parent_spent_time_matrix,matrix_length,pop_numbers,number_mutation); 
        % =============================================================== 
        fprintf('\n \t \t New population is generated'); 
        fprintf('\n ======================================'); 
    end 
    fprintf('\n Iteration: %2d', iter); 
    fprintf('\n Non-Improved Parents: %2d', non_improved_parents); 
end 
output=[parent_spent_time_matrix,parent_inspections_matrix*W',parent_length,parent]; 
end 
 
 

Inside this, the following functions are included, for which the details are explained next. 
 
G.2.2.1. "initiate_population" function 

This function is creating an initial population consisting of chromosomes. To generate a feasible 
chromosome, “create_chromosome” function is executed. This function has been executed until 
it returns a feasible chromosome; this process continues until it generates the number of feasible 
solutions that are targeted. The code for this function is as follows: 
 

%% ============================ Input =============================== 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% L: a vector of size n that shows the minimum required inspections of tracks 
  
%% ============================ Output ============================== 
% pop: a matrix that holds chromosomes of population 
% pop_length: a vector that each element of it shows the total number of 
% inspection in each solution 
% inspections_matrix: a matrix that contains inspection vector of each solution  
% spent_time_matrix: a matrix that contains spent time for each solution in 
% population 
%% 
=====================================================================



141 
 
 

  
function [pop,pop_length,inspections_matrix,spent_time_matrix]=... 
    initiate_population(n,t,tt,L,tau,I,matrix_length,pop_numbers) 
 
% creating a zero matrix to store populations and other parameters 
pop=zeros(pop_numbers,matrix_length); 
pop_length=zeros(pop_numbers,1); 
inspections_matrix=zeros(pop_numbers,n); 
spent_time_matrix=zeros(pop_numbers,1); 
  
for i=1:pop_numbers 
    feasibility=0; 
    while feasibility==0 
        [feasibility,chrom,inspections,spent_time]=... 
            create_chromosome(n,t,tt,tau,L,I); 
    end 
    % Storing feasible chromosome in the matrix, as well as the length 
    % of it and inspections matrix and spent_time 
    pop(i,1:length(chrom))=chrom; 
    pop_length(i,1)=length(chrom); 
    inspections_matrix(i,:)=inspections; 
    spent_time_matrix(i,1)=spent_time; 
end 
end 
 

G.2.2.2. “create_chromosome” function 

This function will help create chromosomes. The idea is that starting from an empty 
chromosome; it adds feasible genes until satisfying minimum required inspections for all tracks. 
The code is as follows: 
 

%% ============================ Input ========================== 
% n: number of tracks 
% t: Inspection Time 
% tt: Traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% L: A vector that shows minimum required inspection for each track 
% chrom: the solution that we want to find its properties 
%% ============================ Output ========================== 
% feasibility: a binary variable that shows the generated chromosome is feasible or not 
% chrom: The created chromosome 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
%% ====================================================== 
function [feasibility,chrom,inspections,spent_time]=... 



142 
 
 

    create_chromosome(n,t,tt,tau,L,I) 
%% ====================== Initialing the Solution ============== 
feasibility=1; 
  
inspections=zeros(1,n); % actual inspections 
LST=-tau; 
fistgenetrials=randperm(n); 
  
x=fistgenetrials(1); 
chrom=x; % generate the first gene 
spent_time=t(chrom); 
gene=1; 
inspections(chrom)=inspections(chrom)+1; 
LST(chrom)=0; 
% gtl (genetrial left): a set of remaining inspections 
gtl=I(L>inspections); % Set of left inspections to satisfy the required inspections 
gtl=gtl(randperm(length(gtl))); % randomize order of set 
% gtd (genetrial done): a set of done inspections 
gtd=I(L<=inspections); % Set of done inspections 
gtd=gtd(randperm(length(gtd))); % randomize order of set 
%% ================ While Loop to Create Feasible Chromosome ====== 
while sum(L>inspections)>0 % this should change % spent_time<=T 
    y=gtl(1); % Creating second gene 
    EST=spent_time+tt(chrom(gene),y); % updating earliest start time possible 
    if EST-LST(y)>=tau(y)  
        chrom=[chrom,y]; % adding the gene 
        LST(y)=EST; % updating the latest start time 
        spent_time=EST+t(y); % updating the total time spent 
        inspections(y)=inspections(y)+1; % updating the actual inspections 
        gene=gene+1; % next gene 
        % ============= updating gtl and gtd ===================== 
        gtl=I(L>inspections); % Set of left inspections to satisfy the required inspections 
        gtl=gtl(randperm(length(gtl))); % randomize order of set 
         
        gtd=I(L<=inspections); % Set of done inspections 
        gtd=gtd(randperm(length(gtd))); % randomize order of set 
        % ======================================================== 
    else 
        gtl(1)=[]; % here, we could not add the current gene, so next potential gene will not 
be the same 
        if isempty(gtl) % if we have tried every potential gene and could not add, then we 
are infeasible; hence, start the chromosome over 
            gtl=gtd(1); % picking new genes from gtd 
            gtd(1)=[]; % removing that gene from gtd 
            if isempty(gtd) 
                fistgenetrials(1)=[]; 



143 
 
 

                if isempty(fistgenetrials) 
                    % we have possible infeasibility 
                    feasibility=0; 
                    chrom=[]; 
                    inspections=L; 
                else 
                    inspections=zeros(1,n); % actual inspections 
                    EST=0; 
                    LST=-tau; 
                    x=fistgenetrials(1); 
                    chrom=x; % generate the first gene 
                    spent_time=t(chrom); 
                    gene=1; 
                    inspections(chrom)=inspections(chrom)+1; 
                    LST(chrom)=0; 
                    gtl=I(L>inspections); gtl=gtl(randperm(length(gtl))); 
                    gtd=I(L<=inspections); gtd=gtd(randperm(length(gtd))); 
                end 
            end 
        end 
    end 
end 
end 

 

G.2.2.3. "pareto_front_selection" function 

This function finds non-dominated solutions. It compares every two solutions inside the 
population. If one solution dominates another one in all objectives, then the dominated solution 
is removed. Then it sorts solutions based on their total time. The code is as follows: 
 

%% =============== Finding Non-Dominated Set of Solutions ================ 
function [parent,parent_inspections_matrix,pareto_front_data,... 
   parent_length,parent_spent_time_matrix,mean_weight_time,parent_number]=... 
    pareto_front_selection(n,pop,pop_length,inspections_matrix,W,... 
    spent_time_matrix,pareto_front_data,iter,mean_weight_time,parent_number) 
  
objectives=[inspections_matrix*W',spent_time_matrix]; 
pop_counter=1; 
  
while pop_counter<=size(objectives,1)-1 
    index_check=pop_counter+1; 
    while index_check<=size(objectives,1) 
        if objectives(pop_counter,1)>=objectives(index_check,1) && ... 
                objectives(pop_counter,2)<=objectives(index_check,2) 
            objectives(index_check,:)=[]; 



144 
 
 

            pop(index_check,:)=[]; 
            pop_length(index_check,:)=[]; 
            inspections_matrix(index_check,:)=[]; 
             
        else 
            if objectives(pop_counter,1)<=objectives(index_check,1) && ... 
                    objectives(pop_counter,2)>=objectives(index_check,2) 
                 
                objectives(pop_counter,:)=[]; 
                pop(pop_counter,:)=[]; 
                pop_length(pop_counter,:)=[]; 
                inspections_matrix(pop_counter,:)=[]; 
                % we need to update indices after this. Because removing 
                % the first chromosome without restarting the index of 
                % second chromosome can leave some compares unchecked! 
                pop_counter=pop_counter-1; 
                index_check=size(objectives,1)+1; 
                 
            else 
                index_check=index_check+1; 
            end 
        end 
    end 
    pop_counter=pop_counter+1; 
end 
  
%% ======================== Output Information ===========================
%pareto_front_data(:,:,iter)=zeros(pop_numbers,2); 
pareto_front_data(1:size(objectives,1),:,iter)=objectives; 
  
parent=pop; 
parent_inspections_matrix=inspections_matrix; 
parent_length=pop_length; 
parent_spent_time_matrix=objectives(:,2); 
  
mean_weight_time(1,iter)=mean(objectives(:,1)./objectives(:,2)); 
% max_weight_time(1,iter)=max(objectives(:,1)./objectives(:,2)); 
  
parent_number(1,iter)=size(parent,1); 
  
%% ================== sorting data based on spent_time =================== 
b=size(parent,2); 
  
parent=[parent,parent_spent_time_matrix]; 
parent_inspections_matrix=[parent_inspections_matrix,parent_spent_time_matrix]; 
parent_length=[parent_length,parent_spent_time_matrix]; 



145 
 
 

  
parent=sortrows(parent,b+1); 
parent_inspections_matrix=sortrows(parent_inspections_matrix,n+1); 
parent_length=sortrows(parent_length,2); 
parent_spent_time_matrix=sortrows(parent_spent_time_matrix,1); 
  
parent=parent(:,1:b); 
parent_inspections_matrix=parent_inspections_matrix(:,1:n); 
parent_length=parent_length(:,1); 
end 
 

G.2.2.4. "mutation" function 

In this function, first a random number less than the length of a chromosome is generated and the 
function selects a part of chromosome that has a length less than this number, starting from the 
beginning of the chromosome. Then, the function uses the “chrom_properties” function to find 
the	݅݊,ݏ݊݋݅ݐܿ݁݌ݏ	,݁݉݅ݐ_ݐ݊݁݌ݏ	ܶܵܮ for this part. Using “partial_mutation” function, the function 
fills the rest of the chromosome while maintaining the feasibility. Mutation generates reserved 
chromosome by the “initial_population” function. The new population is the combination of the 
parents, the children generated though mutation and the reserved chromosomes. The code for 
this function is as follows: 
 

function [pop,pop_length,inspections_matrix,spent_time_matrix]=... 
    mutation(n,t,tt,tau,L,W,T,I,parent,parent_length,parent_inspections_matrix,... 
    parent_spent_time_matrix,matrix_length,pop_numbers,number_mutation) 
  
% ======================= Mutating Population ======================= 
k=size(parent,1); 
  
pop_mutate=[]; 
pop_mutate_length=[]; 
inspections_mutate_matrix=[]; 
spent_time_mutate_matrix=[]; 
  
for j=1:k 
     
    [pop_mutated,pop_mutated_length,... 
        inspections_mutated_matrix,spent_time_mutated_matrix]=... 
        
partial_mutation(n,t,tt,tau,L,W,T,I,parent(j,:),parent_length(j,1),matrix_length,number_mutation)
; 
     
    if ~isempty(pop_mutated_length) 
        pop_mutate=[pop_mutate;pop_mutated]; 
        pop_mutate_length=[pop_mutate_length;pop_mutated_length]; 



146 
 
 

        inspections_mutate_matrix=...  [inspections_mutate_matrix;inspections_mutated_matrix]; 
        spent_time_mutate_matrix=[spent_time_mutate_matrix;spent_time_mutated_matrix]; 
    end 
end  
% ====================== Reserved Population ======================== 
[pop_reserve,pop_length_reserve,inspections_matrix_reserve,spent_time_matrix_reserve]=...initi
ate_population(n,t,tt,L,tau,I,matrix_length,pop_numbers);  
% ====================== New Population ============================= 
pop=[parent;pop_mutate;pop_reserve]; 
pop_length=[parent_length;pop_mutate_length;pop_length_reserve]; 
inspections_matrix=[parent_inspections_matrix;inspections_mutate_matrix;inspections_matrix_r
eserve]; 
spent_time_matrix=[parent_spent_time_matrix;spent_time_mutate_matrix;spent_time_matrix_re
serve]; 
end 
 

G.2.2.5. “partial_mutation” function 

This function first divides the length of the chromosome to the number of mutations. Doing this 
enables finding the length of the parts to be mutated. Each part is mutated once for minimizing 
TT and once for maximizing TW, and the results are saved in a matrix. Inside this function, 
“repair_mutation” function is used. The code is as follows: 
 

%% ============================ Input =============================== 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% W: a vector that shows the importance of each track 
% T: Time horizon 
% I: a vector between 1 and n that constraints track set 
% pop: population member that we want to mutate 
% pop_length: length of that pop member 
% matrix_length: length of matrix we are saving value into 
% number_mutation: number of times we mutate every population member 
%% ============================ Output ========================== 
% inspections_mutated_matrix: Inspection matrix (Which tracks are being inspected  
% spent_time_mutated_matrix: total time of inspection in a particular solution  
% pop_mutated: the result of mutation over a population member (children) 
% pop_mutated_length: length of children 
function [pop_mutated,pop_mutated_length,... 
    inspections_mutated_matrix,spent_time_mutated_matrix]=... 
    partial_mutation(n,t,tt,tau,L,W,T,I,pop,pop_length,matrix_length,number_mutation) 
part_length=floor(pop_length/number_mutation); 
pop_mutated=zeros(1,matrix_length); 



147 
 
 

pop_mutated_length=[]; 
inspections_mutated_matrix=[]; 
spent_time_mutated_matrix=[];  
counter=1; 
for i=1:number_mutation 
    if i<number_mutation 
        mutated_gene=randi([(i-1)*part_length+1,i*part_length]); 
    else 
        mutated_gene=randi([(i-1)*part_length+1,pop_length-1]); 
    end 
    % A=inspections; B=spent_time; C=LST;D=chrom; 
    chrom=pop(1:mutated_gene); 
    [A,B,C]=chrom_properties(n,t,tt,tau,chrom); D=chrom; 
     
    feasibility=0; 
    while ~feasibility 
        [feasibility,chrom,inspections,spent_time]=... 
            repaire_mutation_TT(n,t,tt,tau,L,T,I,D,C,B,A); 
    end 
    if spent_time<=T 
        pop_mutated(counter,1:length(chrom))=chrom; 
        pop_mutated_length(counter,1)=length(chrom); 
        inspections_mutated_matrix(counter,:)=inspections; 
        spent_time_mutated_matrix(counter,1)=spent_time; 
        counter=counter+1; 
    end 
end 
for i=1:number_mutation 
    if i<number_mutation 
        mutated_gene=randi([(i-1)*part_length+1,i*part_length]); 
    else 
        mutated_gene=randi([(i-1)*part_length+1,pop_length-1]); 
    end 
    % A=inspections; B=spent_time; C=LST;D=chrom; 
    chrom=pop(1:mutated_gene); 
    [A,B,C]=chrom_properties(n,t,tt,tau,chrom); D=chrom; 
    feasibility=0; 
    while ~feasibility 
        [feasibility,chrom,inspections,spent_time]=... 
            repaire_mutation_TW(n,t,tt,tau,L,W,I,D,C,B,A); 
    end 
    if spent_time<=T 
        pop_mutated(counter,1:length(chrom))=chrom; 
        pop_mutated_length(counter,1)=length(chrom); 
        inspections_mutated_matrix(counter,:)=inspections; 
        spent_time_mutated_matrix(counter,1)=spent_time; 



148 
 
 

        counter=counter+1; 
    end 
end 
end 
G.2.2.6. “chrom_properties” function 

This function will help repair a chromosome after mutation. Given a part of chromosome, one 
can calculate the following properties of the chromosome by this function: (1) inspections vector 
to compare with ݁݉݅ݐ_ݐ݊݁݌ݏ (2) ,ܮ, and (3) ܶܵܮ (Latest start time). The code is as follows: 
 

%% ============================ Input ================================= 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% chrom: the solution that we want to find its properties 
%% ============================ Output ========================== 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
% LST: a vector that shows the latest start time of inspection for the 
% tracks 
%% ========================== Algorithm =============================== 
% First we collect the first gene in the chromosome and update the LST as -tau.  
% Second, we update the earliest start time to zero.  
% Third, The latest start time of that gene will be zero.  
% Finally, we constitute a loop on the chromosome to update the three  
% variables to the end of chromosome 
%% 
==================================================================== 
function [inspections,spent_time,LST]=chrom_properties(n,t,tt,tau,chrom) 
 
m=length(chrom); % calculating the length of chromosome (How many inspections) 
  
inspections=zeros(1,n); % initiate inspection matrix 
LST=-tau; % initiate Latest start time 
spent_time=t(chrom(1)); % initial value of total time of the solution 
LST(chrom(1))=0; % updating Latest Start time for the solution i.e. chromosome 
inspections(chrom(1))=inspections(chrom(1))+1; 
for i=1:(m-1) 
    EST=spent_time+tt(chrom(i),chrom(i+1)); 
    LST(chrom(i+1))=EST; 
    spent_time=EST+t(chrom(i+1)); 
    inspections(chrom(i+1))=inspections(chrom(i+1))+1; 
end  
end 



149 
 
 

 

G.2.2.7. “repair_mutation” function 

There are two different functions that are repairing chromosomes after mutation. The whole 
process that they are following is similar to creating a feasible chromosome. However, instead of 
finding a random feasible gene, these functions add a feasible gene with minimum inspection 
and traveling time in one function (repair_mutation_TT) and a feasible gene with maximum 
weight in the other function (repair_mutation_TW).  
 
The code for “repair_mutation_TT” function is as follows: 
 

%% ============================ Input ================================ 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% T: Time horizon 
% I: a vector between 1 and n that constrains track set 
% Chrom: chromosome that we want to repair 
% LST: Latest start time of each track in chromosome 
% spent_time: spent time in chromosome 
% inspections: inspection vector in chromosome to compare to L 
  
%% ============================ Output =============================== 
% feasibility: a binary variable that shows the generated chromosome is feasible or not 
% chrom: The created chromosome 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
function [feasibility,chrom,inspections,spent_time]=... 
    repaire_mutation_TT(n,t,tt,tau,L,T,I,chrom,LST,spent_time,inspections) 
a=chrom; 
b=LST; 
c=spent_time; 
d=inspections; 
feasibility=1; 
gtl=I(L>d); % Set of left inspections to satisfy the required inspections 
gtl=gtl(randperm(length(gtl))); % randomize order of set 
gtd=I(L<=d); % Set of done inspections 
gtd=gtd(randperm(length(gtd))); % randomize order of set 
% =================== Create a Feasible fistgenetrials =================== 
fistgenetrials=[]; 
for i=1:n 
    EST=spent_time+tt(chrom(end),i); 
    if EST-LST(i)>=tau(i) 
        fistgenetrials=[fistgenetrials,i]; 



150 
 
 

    end 
end 
fistgenetrials=fistgenetrials(randperm(length(fistgenetrials))); 
% =================================================================== 
x=fistgenetrials(1); chrom=[a,x]; 
inspections=d; inspections(x)=inspections(x)+1; 
LST=b; EST=c+tt(a(end),x); LST(x)=EST; 
spent_time=EST+t(x); 
gene=length(chrom); 
%% ================ While Loop to Create Feasible Chromosome ============== 
while sum(L>inspections)>0 % this should change % spent_time<=T 
    y=greedy_selection_TT(t,tt,tau,T,LST,spent_time,chrom,gtl,gtd); % This must be a gready 
selection along with the following process 
    if ~isempty(y) 
        % Since, it is already feasible 
        EST=spent_time+tt(chrom(gene),y); % updating earliest start time possible 
        chrom=[chrom,y]; % adding the gene 
        LST(y)=EST; % updating the latest start time 
        spent_time=EST+t(y); % updating the total time spent 
        inspections(y)=inspections(y)+1; % updating the actual inpsections 
        gene=gene+1; % next gene 
        % ============= updating gtl and gtd ===================== 
        gtl=I(L>inspections); gtl=gtl(randperm(length(gtl))); 
        gtd=I(L<=inspections); gtd=gtd(randperm(length(gtd))); 
        % ======================================================== 
    else 
        fistgenetrials(1)=[]; 
        if isempty(fistgenetrials) 
            % we have possible infeasibility 
            feasibility=0; 
            chrom=a; 
            LST=b; 
            spent_time=c; 
            inspections=d; 
        else 
            gtl=I(L>d); gtl=gtl(randperm(length(gtl))); 
            gtd=I(L<=d); gtd=gtd(randperm(length(gtd))); 
            x=fistgenetrials(1); chrom=[a,x]; 
            inspections=d; inspections(x)=inspections(x)+1; 
            LST=b; EST=c+tt(a(end),x); LST(x)=EST; 
            spent_time=EST+t(x); 
            gene=length(chrom); 
        end 
    end 
end 
end 



151 
 
 

The code for “repair_mutation_TW” function is as follows: 
 

%% ============================ Input ================================= 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% W: a vector of weights of tracks 
% I: a vector between 1 and n that constrains track set 
% Chrom: chromosome that we want to repair 
% LST: Latest start time of each track in chromosome 
% spent_time: spent time in chromosome 
% inspections: inspection vector in chromosome to compare to L 
  
%% ============================ Output =============================== 
% feasibility: a binary variable that shows the generated chromosome is feasible or not 
% chrom: The created chromosome 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
 
function [feasibility,chrom,inspections,spent_time]=... 
    repaire_mutation_TW(n,t,tt,tau,L,W,I,chrom,LST,spent_time,inspections) 
  
a=chrom; 
b=LST; 
c=spent_time; 
d=inspections; 
feasibility=1; 
gtl=I(L>d); % Set of left inspections to satisfy the required inspections 
gtl=gtl(randperm(length(gtl))); % randomize order of set 
gtd=I(L<=d); % Set of done inspections 
gtd=gtd(randperm(length(gtd))); % randomize order of set 
% =================== Create a Feasible fistgenetrials =================== 
fistgenetrials=[]; 
for i=1:n 
    EST=spent_time+tt(chrom(end),i); 
    if EST-LST(i)>=tau(i) 
        fistgenetrials=[fistgenetrials,i]; 
    end 
end 
fistgenetrials=fistgenetrials(randperm(length(fistgenetrials))); 
% =================================================================== 
x=fistgenetrials(1); chrom=[a,x]; 
inspections=d; inspections(x)=inspections(x)+1; 
LST=b; EST=c+tt(a(end),x); LST(x)=EST; 



152 
 
 

spent_time=EST+t(x); 
gene=length(chrom); 
%% ================ While Loop to Create Feasible Chromosome ============== 
while sum(L>inspections)>0 % this should change % spent_time<=T 
    y=greedy_selection_TW(tt,tau,W,LST,spent_time,chrom,gtl,gtd); % This must be a gready 
selection along with the following process 
    if ~isempty(y) 
        % Since, it is already feasible 
        EST=spent_time+tt(chrom(gene),y); % updating earliest start time possible 
        chrom=[chrom,y]; % adding the gene 
        LST(y)=EST; % updating the latest start time 
        spent_time=EST+t(y); % updating the total time spent 
        inspections(y)=inspections(y)+1; % updating the actual inpsections 
        gene=gene+1; % next gene 
        % ============= updating gtl and gtd ===================== 
        gtl=I(L>inspections); gtl=gtl(randperm(length(gtl))); 
        gtd=I(L<=inspections); gtd=gtd(randperm(length(gtd))); 
        % ======================================================== 
    else 
        fistgenetrials(1)=[]; 
        if isempty(fistgenetrials) 
            % we have possible infeasibility 
            feasibility=0; 
            chrom=a; 
            LST=b; 
            spent_time=c; 
            inspections=d; 
        else 
            gtl=I(L>d); gtl=gtl(randperm(length(gtl))); 
            gtd=I(L<=d); gtd=gtd(randperm(length(gtd))); 
            x=fistgenetrials(1); chrom=[a,x]; 
            inspections=d; inspections(x)=inspections(x)+1; 
            LST=b; EST=c+tt(a(end),x); LST(x)=EST; 
            spent_time=EST+t(x); 
            gene=length(chrom); 
        end 
    end 
end 
end 
 

G.2.2.8. “greedy_selection” functions 

The functions in this section are "greedy_selection_TT" and "greedy_selection_TT" functions. In 
these two functions, the search is biased towards less inspected tracks and the search initially 
ignores the tracks, which satisfy their minimum inspections. In order to do so, the functions first 



153 
 
 

choose from ݈݃ݐ (the set of tracks with remaining inspections) considering their minimum 
inspection plus traveling time and maximum importance weight. If	݈݃ݐ is empty, the functions 
then choose a track from ݃݀ݐ (set of tracks with no remaining inspections).  
 
The code for "greedy_selection_TT" function is as follows: 
 
% inputs: gtl, gtd, n, t, tt, tau, LST, chrom 
% Output: greedy_track 
  
function greedy_track=greedy_selection_TT(t,tt,tau,T,LST,spent_time,chrom,gtl,gtd) 
  
COST=T; % set cost a huge number 
greedy_track=[]; 
  
%% ================== Greedy Feasible Biased Track ====================== 
m=length(gtl); 
for i=1:m 
    EST=spent_time+tt(chrom(end),gtl(i)); 
    if EST-LST(gtl(i))>=tau(gtl(i)) 
        % Now, between them, we find the one with less cost 
        cost=tt(chrom(end),gtl(i))+t(gtl(i)); 
        if cost<COST 
            greedy_track=gtl(i); % select it as the track 
            COST=cost; % updating the cost 
        end 
    end 
end 
  
%% ======================= Feasible Biased Track ======================== 
if isempty(greedy_track) 
    m=length(gtd); 
    for i=1:m 
        EST=spent_time+tt(chrom(end),gtd(i)); 
        if EST-LST(gtd(i))>=tau(gtd(i)) 
            % Now, between them, we find the one with less cost 
            cost=tt(chrom(end),gtd(i))+t(gtd(i)); 
            if cost<COST 
                greedy_track=gtd(i); % select it as the track 
                COST=cost; % updating the cost 
            end 
        end 
    end 
end 
  
end 
 



154 
 
 

The code for "greedy_selection_TW" function is as follows: 
 

% inputs: gtl, gtd, n, t, tt, tau, LST, chrom 
% Output: greedy_track 
function greedy_track=greedy_selection_TW(tt,tau,W,LST,spent_time,chrom,gtl,gtd) 
COST=0; % set cost zero for TW, since we want to find a track with maximum weight 
greedy_track=[]; 
%% ================== Greedy Feasible Biased Track ====================== 
m=length(gtl); 
for i=1:m 
    EST=spent_time+tt(chrom(end),gtl(i)); 
    if EST-LST(gtl(i))>=tau(gtl(i)) 
        % Now, between them, we find the one with less cost 
        cost=W(gtl(i)); 
        if cost>COST 
            greedy_track=gtl(i); % select it as the track 
            COST=cost; % updating the cost 
        end 
    end 
end 
%% ======================= Feasible Biased Track ======================== 
if isempty(greedy_track) 
    m=length(gtd); 
    for i=1:m 
        EST=spent_time+tt(chrom(end),gtd(i)); 
        if EST-LST(gtd(i))>=tau(gtd(i)) 
            % Now, between them, we find the one with less cost 
            cost=W(gtd(i)); 
            if cost>COST 
                greedy_track=gtd(i); % select it as the track 
                COST=cost; % updating the cost 
            end 
        end 
    end 
end 
  
end 
 

G.3. Greedy Algorithm Description and User Guidelines 
 
Greedy algorithm uses the parameters given in Table 21 as the input and gives “outcome_GR” as 
the output. In order to use this algorithm, the m file (Inspection_Planner_Greedy.m) should be 
opened and executed. After running, inside the MATLAB command window, it will ask the 
following question: 

- What is the number of Tracks?  



155 
 
 

For this question, the number of tracks should be given. The number of tracks must be equal to 
the size of the row vectors parameters in Table 21. It is important to note that similar to the 
genetic algorithm, the unit of time horizon T, must be equal to unit of travelling time (ݐݐ), 
inspection time (ݐ), and the time between consecutive inspections (ݑܽݐ).  
 
Inside the main file of Greedy algorithm (Inspection_Planner_Greedy.m), three functions are 
used: (1) “create_inputs” function, (2) “generate_tour” function, and (3) "pareto_front_selection" 
function. In this section, instead of representing a solution as a chromosome, a solution is 
represented as a tour.. In the following subsections, each of these functions are explained. In 
addition, in this main file, we save the outcome as “outcome_GR”; an Excel file, and we draw a 
figure of Pareto Fronts of solutions. 
 
In this main function, the outcome is saved as “outcome_GR”, an Excel file, and a figure of the 
inspection schedules in the Pareto Front is drawn. The “Inspection_Planner_Greedy.m” for 
greedy algorithm is as follows: 
 
%% ================== Inspection Planner Greedy ==================== 
clc; clear; 
%% ======================== Step 1: Input Data ====================== 
[n,I,t,tt,tau,L,W,matrix_length]=create_inputs(); 
  
%% ===================== Step 2: Initialization ===================== 
tour_matrix=zeros(1,matrix_length); 
tour_length_matrix=zeros(1,1); 
spent_time_matrix=zeros(1,1); 
inspections_matrix=zeros(1,n); 
  
%% ==================== Step 3: Iteration Loop ====================== 
% Finding solution to minimize TT 
for start_point=1:n 
    feasibility=0; 
    while feasibility==0 
        [feasibility,tour,spent_time,inspections]=... 
            generate_tour_TT(n,I,t,tt,tau,L,start_point); 
    end 
    % saving data into matrices 
    tour_length_matrix(start_point,1)=length(tour); 
    tour_matrix(start_point,1:length(tour))=tour; 
    spent_time_matrix(start_point,1)=spent_time; 
    inspections_matrix(start_point,:)=inspections; 
    fprintf('\n A TT-Tour is generated starting from: %2d', start_point); 
end 
% Finding solution to maximize TW 
for start_point=1:n 
    feasibility=0; 
    while feasibility==0 



156 
 
 

        [feasibility,tour,spent_time,inspections]=... 
            generate_tour_TW(n,I,t,tt,tau,L,W,start_point); 
    end 
    % saving data into matrices 
    tour_length_matrix(n+start_point,1)=length(tour); 
    tour_matrix(n+start_point,1:length(tour))=tour; 
    spent_time_matrix(n+start_point,1)=spent_time; 
    inspections_matrix(n+start_point,:)=inspections; 
    fprintf('\n A TW-Tour is generated starting from: %2d', start_point); 
end 
%% ============= Step 4: Finding Non-Dominated Solutions ============ 
[objectives,tour_matrix,tour_length_matrix,spent_time_matrix,... 
    inspections_matrix]=pareto_front_selection(W,tour_matrix,... 
    tour_length_matrix,spent_time_matrix,inspections_matrix); 
%% =================== Step 5: saving final Solution ===================== 
output=[objectives(:,2),objectives(:,1),tour_length_matrix,tour_matrix]; 
xlswrite('output_GR.xlsx', output); 
  
%% ====================== Step 6: Drawing figures ======================== 
scatter(output(:,1),output(:,2),30,'c','MarkerEdgeColor','b','MarkerFaceColor','b'); 
xlabel('Objective 1: Total Time (TT)','FontSize',10); 
ylabel('Objective 2: Total Weight (TW)','FontSize',10); 
title('Pareto Front','FontSize',10,'FontWeight','bold'); 
%% 
==================================================================== 
 

G.3.1. “create_inputs” function 

This function is similar to the one coded for the genetic algorithm. This function reads 
parameters, which are introduced in Table 21, from the same directory with Matlab files and 
creates necessary inputs for the Greedy algorithm. First it is asking about the number of tracks 
(n). The following shows the code for this function.  
 

function [n,I,t,tt,tau,L,W,matrix_length]=create_inputs() 
fprintf('\n ---> '); 
prompt1='What is the number of tracks?'; 
n=input(prompt1); % Getting number of tracks 
%% Importing parameters t,tt,tau,L,W 
% t: a Vector that shows Inspection Time 
% tt: A matrix that shows Traveling Time between tracks 
% tau: a Vector that shows time for consecutive inspection of tracks 
% L: a Vector that shows Minimum required inspection for each track 
% W: Importance of Tracks 
  
a=xlsread('t.xlsx'); 



157 
 
 

b=xlsread('tt.xlsx'); 
c=xlsread('tau.xlsx'); 
d=xlsread('L.xlsx'); 
e=xlsread('W.xlsx'); 
  
t=a(1:n); 
tt=b(1:n,1:n); 
tau=c(1:n); 
L=d(1:n); 
W=e(1:n); 
I=(1:n); % set of tracks 
matrix_length=ceil(max(t)*sum(L)); 
% we are using that to create a matrix to store chromosome the matrix has a 
% lot of zeros and just a part of each row will be filled by non-zero 
% elements 
end 

 

G.3.2. “generate_tour” functions 

There are two different functions generating tours. The whole process that they are following is 
similar to the repairing after mutation in the genetic algorithm. A feasible gene is added with the 
minimum inspection plus the traveling time in one function (generate_tour_TT) and with the 
maximum weight in the other function (generate_tour_TW).  
 
The code for “generate_tour_TT” function is as follows: 
 
%% ============================ Input ================================ 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% L: A vector that shows minimum required inspection for each track 
% I: a vector between 1 and n that constrains track set 
% Start_point: A track that we want to start inspection from 
%% ============================ Output ============================== 
% feasibility: a binary variable that shows the generated chromosome is feasible or not 
% chrom: The created chromosome 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
 
function [feasibility,tour,spent_time,inspections]=... 
    generate_tour_TT(n,I,t,tt,tau,L,start_point) 
  
T=sum(L)*(max(t)+max(max(tt))); 
feasibility=1; 



158 
 
 

secondtracktrials=I; 
secondtracktrials(start_point)=[]; 
stt=secondtracktrials(randperm(length(secondtracktrials))); 
x=stt(1); 
tour=[start_point,x]; 
inspections=zeros(1,n); 
inspections(tour)=inspections(tour)+1; 
LST=-tau; 
LST(start_point)=0; 
LST(x)=t(start_point)+tt(start_point,x); 
spent_time=t(start_point)+tt(start_point,x)+t(x); 
  
track=2; 
%% ================ While Loop to Create Feasible Chromosome ============== 
while max(L-inspections)>0  
    y=greedy_selection_TT(n,t,tt,tau,L,T,tour(track),LST,spent_time,inspections); % Creating 
second gene 
    EST=spent_time+tt(tour(track),y); % updating earliest start time possible 
    tour=[tour,y]; % adding the gene 
    LST(y)=EST; % updating the latest start time 
    spent_time=EST+t(y); % updating the total time spent 
    inspections(y)=inspections(y)+1; % updating the actual inpsections 
    track=track+1; % next gene 
  
    if isempty(y) % if we have tried every potential gene and could not add, then we are 
infeasible; hence, start the chromosome over 
        stt(1)=[]; 
        if isempty(stt) 
            % we have possible infeasibility 
            feasibility=0; 
            tour=[]; 
            inspections=L; 
        else 
            % Restart with another stt 
            stt=stt(randperm(length(stt))); 
            x=stt(1); 
            tour=[start_point,x]; 
            inspections=zeros(1,n); 
            inspections(tour)=inspections(tour)+1; 
            LST=-tau; 
            LST(start_point)=0; 
            LST(x)=t(start_point)+tt(start_point,x); 
            spent_time=t(start_point)+tt(start_point,x)+t(x); 
            track=2; 
        end 
    end 



159 
 
 

end 
end 
 
The code for “generate_tour_TW” function is as follows: 
 
%% ============================ Input ================================ 
% n: number of tracks 
% t: a vector of size n that shows the Inspection Time for each track 
% tt: n*n matrix that shows traveling time between tracks 
% tau: allowed time between consecutive inspection of the same tracks 
% L: A vector that shows minimum required inspection for each track 
% I: a vector between 1 and n that constains track set 
% Start_point: A track that we want to start inspection from 
  
%% ============================ Output =============================== 
% feasibility: a binary variable that shows the generated chromosome is feasible or not 
% chrom: The created chromosome 
% inspections: Inspection matrix (Which tracks are being inspected and how many times 
% spent_time: total time of inspection in a particular solution i.e. chrom 
 
function [feasibility,tour,spent_time,inspections]=... 
    generate_tour_TW(n,I,t,tt,tau,L,W,start_point) 
  
feasibility=1; 
secondtracktrials=I; 
secondtracktrials(start_point)=[]; 
stt=secondtracktrials(randperm(length(secondtracktrials))); 
x=stt(1); 
tour=[start_point,x]; 
inspections=zeros(1,n); 
inspections(tour)=inspections(tour)+1; 
LST=-tau; 
LST(start_point)=0; 
LST(x)=t(start_point)+tt(start_point,x); 
spent_time=t(start_point)+tt(start_point,x)+t(x); 
track=2; 
%% ================ While Loop to Create Feasible Chromosome ============== 
while max(L-inspections)>0 % this should change % spent_time<=T 
    y=greedy_selection_TW(n,tt,tau,L,W,tour(track),LST,spent_time,inspections); 
    EST=spent_time+tt(tour(track),y); % updating earliest start time possible 
    tour=[tour,y]; % adding the gene 
    LST(y)=EST; % updating the latest start time 
    spent_time=EST+t(y); % updating the total time spent 
    inspections(y)=inspections(y)+1; % updating the actual inpsections 
    track=track+1; % next gene 
     



160 
 
 

    if isempty(y) % if we have tried every potential gene and could not add, then we are 
infeasible; hence, start the chromosome over 
        stt(1)=[]; 
        if isempty(stt) 
            % we have possible infeasibility 
            feasibility=0; 
            tour=[]; 
            inspections=L; 
        else 
            % Restart with another stt 
            stt=stt(randperm(length(stt))); 
            x=stt(1); 
            tour=[start_point,x]; 
            inspections=zeros(1,n); 
            inspections(tour)=inspections(tour)+1; 
            LST=-tau; 
            LST(start_point)=0; 
            LST(x)=t(start_point)+tt(start_point,x); 
            spent_time=t(start_point)+tt(start_point,x)+t(x); 
            track=2; 
        end 
    end 
end 
end 
 

G.3.3. “greedy_selection” functions 

 
Similar to "greedy_selection" functions in the genetic algorithm, the functions in this section are 
"greedy_selection_TT" and "greedy_selection_TW" functions. In these two functions, the search 
is biased toward less inspected tracks and the search initially ignores the tracks with no 
remaining required inspections. In order to do so, the functions first choose from ݈݃ݐ with the 
minimum inspection time plus traveling time and the maximum inspection importance weight. If 
  .is selected ݈ݐ݃ is empty, a track from ݈ݐ݃
 
The code for "greedy_selection_TT" function is as follows: 
 
% inputs: gtl, gtd, n, t, tt, tau, LST, chrom 
% Output: greedy_track 
function greedy_track=... 
    greedy_selection_TT(n,t,tt,tau,L,T,track,LST,spent_time,inspections) 
  
COST=T; % set cost a huge number 
greedy_track=[]; 
for i=1:n 



161 
 
 

    if i~=track % we have to make sure track is not equal to i 
        f=(spent_time+tt(track,i))*min(1,max(0,L(i)-inspections(i))) ... 
            -tau(i)-LST(i); % minimim required+gtl+consecutive 
        if f>=0 
            cost=tt(track,i)+t(i); 
            if cost<COST 
                greedy_track=i; % select it as the track 
                COST=cost; % updating the cost 
            end 
        end 
    end 
end 
if isempty(greedy_track) 
    for i=1:n 
        if i~=track % we have to make sure track is not equal to i 
            f=spent_time+tt(track,i)-tau(i)-LST(i); 
            if f>=0 
                cost=tt(track,i)+t(i); 
                if cost<COST 
                    greedy_track=i; % select it as the track 
                    COST=cost; % updating the cost 
                end 
            end 
        end 
    end 
end 
end 
 
The code for "greedy_selection_TW" function is as follows: 
 
% inputs: gtl, gtd, n, t, tt, tau, LST, chrom 
% Output: greedy_track 
  
function greedy_track=... 
    greedy_selection_TW(n,tt,tau,L,W,track,LST,spent_time,inspections) 
COST=0; % set cost a huge number 
greedy_track=[]; 
for i=1:n 
    if i~=track % we have to make sure track is not equal to i 
        %dummy=min(1,max(0,L(i)-inspections(i))); 
        %f=(spent_time+tt(track,i))*dummy -tau(i)-LST(i); 
        f=(spent_time+tt(track,i))*min(1,max(0,L(i)-inspections(i))) ... 
            -tau(i)-LST(i); 
        if f>=0 
            cost=W(i); 
            if cost>COST 



162 
 
 

                greedy_track=i; % select it as the track 
                COST=cost; % updating the cost 
            end 
        end 
    end 
end 
if isempty(greedy_track) 
    for i=1:n 
        if i~=track % we have to make sure track is not equal to i 
            %dummy=min(1,max(0,L(i)-inspections(i))); 
            %f=(spent_time+tt(track,i))*dummy -tau(i)-LST(i); 
            f=spent_time+tt(track,i)-tau(i)-LST(i); 
            if f>=0 
                cost=W(i); 
                if cost>COST 
                    greedy_track=i; % select it as the track 
                    COST=cost; % updating the cost 
                end 
            end 
        end 
    end 
end 
end 
 

G.3.4. "pareto_front_selection" function 

Similar to the genetic algorithm, this function finds the non-dominated solutions for the Greedy 
algorithm. It compares every two solutions between tours. If one solution dominates another in 
all objectives, then the dominated solution is removed. Then, the function sorts the non-
dominated solutions based on their total time. The code is as follows: 
 
%% =============== Finding Non-Dominated Set of Solutions ================ 
function [objectives,tour_matrix,tour_length_matrix,spent_time_matrix,... 
    inspections_matrix]=pareto_front_selection(W,tour_matrix,... 
    tour_length_matrix,spent_time_matrix,inspections_matrix) 
 
objectives=[inspections_matrix*W',spent_time_matrix]; 
  
tour_counter=1; 
  
while tour_counter<=size(objectives,1)-1 
    index_check=tour_counter+1; 
    while index_check<=size(objectives,1) 
        if objectives(tour_counter,1)>=objectives(index_check,1) && ... 
                objectives(tour_counter,2)<=objectives(index_check,2) 



163 
 
 

             
            objectives(index_check,:)=[]; 
            tour_matrix(index_check,:)=[]; 
            tour_length_matrix(index_check,:)=[]; 
            inspections_matrix(index_check,:)=[]; 
             
        else 
            if objectives(tour_counter,1)<=objectives(index_check,1) && ... 
                    objectives(tour_counter,2)>=objectives(index_check,2) 
                 
                objectives(tour_counter,:)=[]; 
                tour_matrix(tour_counter,:)=[]; 
                tour_length_matrix(tour_counter,:)=[]; 
                inspections_matrix(tour_counter,:)=[]; 
                % we need to update indeces after this. Because removing 
                % the first chromosome withou restarting the index of 
                % second chromosome can leave some compares unchecked! 
                tour_counter=tour_counter-1; 
                index_check=size(objectives,1)+1; 
                 
            else 
                index_check=index_check+1; 
            end 
        end 
  
    end 
    tour_counter=tour_counter+1; 
end 
spent_time_matrix=objectives(:,2); 
end 
 
 
   



164 
 
 

Appendix H. Remedial Actions for Detected Cracks 
 

Table 25 below summarizes the remedial actions based on the length of cracks. 

Table 25. Remedial Actions for Crack Sizes 

Remedial Action (Office of Railroad Safety, 2011) 
Defect Length of Defects (inch) Percent of Head Cross –sectional 

area weakened by defect 
If defective rail 
is not replaced, 

take*: More than But not more 
than 

Less than But not less 
than 

Transverse fissure 
Compound fissure 

  70 5 B 
  100 70 A2 
   100 A 

Detail fracture 
Engine burn 

fracture 
Defective weld 

  25 5 C 
  80 25 D 
  100 80 A2 [E and H] 
   100 A [E and H] 

Horizontal or 
Vertical split head 

Split web, Piped rail 
Head web separation 

1 2   H and F 
2 4   I and G 
4    B 

Breakout in railhead  A 
Bolt hole crack 1

2ൗ  1   H and F 

1 1 1
2ൗ    H and G 

1	 1 2ൗ     B 

Breakout in railhead  A 
Broken Base 1 6   D 

6    A or [E and I] 
Ordinary Break     A or E 
Damaged Rail     D 
Flattened Rail ݄ݐ݌݁ܦ ൒ 3

8ൗ  and 
݄ݐ݃݊݁ܮ ൒ 8 

   H 

 

* For details, please refer to Office of Railroad Manual, Chapter 5 (2011).  

 


	cmr15-005_Cover
	Track Inspection Planning - Revised Final Report - v2



